Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 12 | 4 | 493-508
Tytuł artykułu

Stilbene derivatives inhibit the activity of the inner mitochondrial membrane chloride channels

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ion channels selective for chloride ions are present in all biological membranes, where they regulate the cell volume or membrane potential. Various chloride channels from mitochondrial membranes have been described in recent years. The aim of our study was to characterize the effect of stilbene derivatives on single-chloride channel activity in the inner mitochondrial membrane. The measurements were performed after the reconstitution into a planar lipid bilayer of the inner mitochondrial membranes from rat skeletal muscle (SMM), rat brain (BM) and heart (HM) mitochondria. After incorporation in a symmetric 450/450 mM KCl solution (cis/trans), the chloride channels were recorded with a mean conductance of 155 ± 5 pS (rat skeletal muscle) and 120 ± 16 pS (rat brain). The conductances of the chloride channels from the rat heart mitochondria in 250/50 mM KCl (cis/trans) gradient solutions were within the 70–130 pS range. The chloride channels were inhibited by these two stilbene derivatives: 4,4′-diisothiocyanostilbene-2,2′-disulfonic acid (DIDS) and 4-acetamido-4′-isothiocyanostilbene-2,2′-disulfonic acid (SITS). The skeletal muscle mitochondrial chloride channel was blocked after the addition of 1 mM DIDS or SITS, whereas the brain mitochondrial channel was blocked by 300 μM DIDS or SITS. The chloride channel from the rat heart mitochondria was inhibited by 50–100 μM DIDS. The inhibitory effect of DIDS was irreversible. Our results confirm the presence of chloride channels sensitive to stilbene derivatives in the inner mitochondrial membrane from rat skeletal muscle, brain and heart cells.
Wydawca
-
Rocznik
Tom
12
Numer
4
Strony
493-508
Opis fizyczny
p.493-508,fig.,ref.
Twórcy
  • Nencki Institute of Experimental Biology, Pasteura 3, 02-093 Warsaw, Poland
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • 1. Szewczyk, A., Skalska, J., Glab, M., Kulawiak, B., Malinska, D., KoszelaPiotrowska, I. and Kunz, W.S. Mitochondrial potassium channels: From pharmacology to function. Biochim. Biophys. Acta 1757 (2006) 715-720.
  • 2. Wang, X., Takahashi, N., Uramoto, H. and Okada, Y. Chloride channel inhibition prevents ROS-dependent apoptosis induced by ischemiareperfusion in mouse cardiomyocytes. Cell. Physiol. Biochem. 16 (2005) 147-154.
  • 3. Beavis, A.D. and Garlid, K.D. The mitochondrial inner membrane anion channel. Regulation by divalent cations and protons. J. Biol. Chem. 262 (1987) 15085-15093.
  • 4. Beavis, A.D. Properties of the inner membrane anion channel in intact mitochondria. J. Bioenerg. Biomembr. 24 (1992) 77-90.
  • 5. Schönfeld, P., Sayeed, I., Bohnensack, R. and Siemen, D. Fatty acids induce chloride permeation in rat liver mitochondria by activation of the inner membrane anion channel (IMAC). J. Bioenerg. Biomembr. 36 (2004) 241- 248.
  • 6. Sorgato, M.C., Keller, B.U. and Stuhmer, W. Patch-clamping of the inner mitochondrial membrane reveals a voltage-dependent ion channel. Nature 330 (1987) 498-500.
  • 7. Sorgato, M.C., Moran, O., De Pinto, V., Keller, B.U. and Stuehmer, W. Further investigation on the high-conductance ion channel of the inner membrane of mitochondria. J. Bioenerg. Biomembr. 21 (1989) 485-496.
  • 8. Moran, O., Sandri, G., Panfili, E., Stuhmer, W. and Sorgato, M.C. Electrophysiological characterization of contact sites in brain mitochondria. J. Biol. Chem. 265 (1990) 908-913. 9. Klitsch, T. and Siemen, D. Inner mitochondrial membrane anion channel is present in brown adipocytes but is not identical with the uncoupling protein. J. Membr. Biol. 122 (1991) 69-75.
  • 10. Borecky, J., Jezek, P. and Siemen, D. 108-pS channel in brown fat mitochondria might be identical to the inner membrane anion channel. J. Biol. Chem. 272 (1997) 19282-19289.
  • 11. Hayman, K.A., Spurway, T.D. and Ashley, R.H. Single anion channels reconstituted from cardiac mitoplasts. J. Membrane Biol. 136 (1993) 181- 190.
  • 12. Fernandez-Salas, E., Sagar, M., Cheng, C., Yuspa, S.H. and Weinberg, W.C. p53 and tumor necrosis factor alpha regulate the expression of a mitochondrial chloride channel protein. J. Biol. Chem. 274 (1999) 36488- 36497.
  • 13. Landry, D., Sullivan, S., Nicolaides, M., Redhead, C., Edelman, A., Field, M., al-Awqati, Q. and Edwards, J. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J. Biol. Chem. 268 (1993) 14948-14955.
  • 14. Tonini, R., Ferroni, A., Valenzuela, S.M., Warton, K., Campbell, T.J., Breit, S.N. and Mazzanti, M. Functional characterization of the NCC27 nuclear protein in stable transfected CHO-K1 cells. FASEB J. 14 (2000) 1171-1178.
  • 15. Dulhunty, A.F., Pouliquin, P., Coggan, M., Gage, P.W. and Board, P.G. A recently identified member of the glutathione transferase structural family modifies cardiac RyR2 substate activity, coupled gating and activation by Ca2+ and ATP. Biochem. J. 390 (2005) 333-343.
  • 16. Qian, Z., Okuhara, D., Abe, M.K. and Rosner, M.R. Molecular cloning and characterization of a mitogen-activated protein kinase-associated intracellular chloride channel. J. Biol. Chem. 274 (1999) 1621-1627.
  • 17. Berryman, M., Bruno, J., Price, J. and Edwards, J.C. CLIC-5A functions as a chloride channel in vitro and associates with the cortical actin cytoskeleton in vitro and in vivo. J. Biol. Chem. 279 (2004) 34794-34801.
  • 18. Friedli, M., Guipponi, M., Bertrand, S., Bertrand, D., Neerman-Arbez, M., Scott, H.S., Antonarakis, S.E. and Reymond, A. Identification of a novel member of the CLIC family, CLIC6, mapping to 21q22.12. Gene 320 (2003) 31-40.
  • 19. Mizukawa, Y., Nishizawa, T., Nagao, T., Kitamura, K. and Urushidani, T. Cellular distribution of parchorin, a chloride intracellular channel-related protein, in various tissues. Am. J. Physiol. Cell Physiol. 282 (2002) C786- 795.
  • 20. Suh, K.S., Mutoh, M., Gerdes, M. and Yuspa, S.H. CLIC4, an intracellular chloride channel protein, is a novel molecular target for cancer therapy. J. Investig. Dermatol. Symp. Proc. 10 (2005) 105-109.
  • 21. Fernandez-Salas, E., Suh, K.S., Speransky, V.V., Bowers, W.L., Levy, J.M., Adams, T., Pathak, K.R., Edwards, L.E., Hayes, D.D., Cheng, C., Steven, A.C., Weinberg, W.C. and Yuspa, S.H. mtCLIC/CLIC4, an organellular chloride channel protein, is increased by DNA damage and participates in the apoptotic response to p53. Mol. Cell Biol. 22 (2002) 3610-3620.
  • 22. Suh, K.S., Mutoh, M., Nagashima, K., Fernandez-Salas, E., Edwards, L.E., Hayes, D.D., Crutchley, J.M., Marin, K.G., Dumont, R.A., Levy, J.M., Cheng, C., Garfield, S. and Yuspa, S.H. The organellular chloride channel protein CLIC4/mtCLIC translocates to the nucleus in response to cellular stress and accelerates apoptosis. J. Biol. Chem. 279 (2004) 4632-4641.
  • 23. Singh, H. and Ashley, R.H. CLIC4 (p64H1) and its putative transmembrane domain form poorly selective, redox-regulated ion channels. Mol. Membr. Biol. 24 (2007) 41-52.
  • 24. Wiśniewski, E., Kunz, W.S. and Gellerich, F.N. Phosphate affects the distribution of flux control among the enzymes of oxidative phosphorylation in rat skeletal muscle mitochondria. J. Biol. Chem. 268 (1993) 9343-9346.
  • 25. Dębska, G., Kicińska, A., Skalska, J., Szewczyk, A., May, R., Elger, C.E. and Kunz, W.S. Opening of potassium channels modulates mitochondrial function in rat skeletal muscle. Biochim. Biophys. Acta 1556 (2002) 97-105.
  • 26. Kudin, A, Bimpong-Buta, N.Y., Vielhaber, S., Elger, C.E. and Kunz, W.S. Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279 (2004) 4127-4135.
  • 27. Cino, M. and Del Maestro, R.F. Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269 (1989) 623-638.
  • 28. Holmuhamedov, E.L., Wang, L. and Terzic, A. ATP-sensitive K+ channel openers prevent Ca2+ overload in rat cardiac mitochondria. J. Physiol. 519 (1999) 347-360.
  • 29. Malekova, L., Kominkova, A., Ferko, M., Stefanik, P., Krizanova, O., Ziegelhöffer, A., Szewczyk, A. and Ondrias, K. Bongkrekic acid and atractyloside inhibits chloride channels from mitochondrial membranes of rat heart. Biochim. Biophys. Acta 1767 (2007) 31-44.
  • 30. Bednarczyk, P., Kicińska, A., Kominkova, V., Ondrias, K., Dołowy K. and Szewczyk, A. Quinine inhibits mitochondrial ATP-regulated potassium channel from bovine heart. J. Membr. Biol. 199 (2004) 63-72.
  • 31. Bednarczyk, P., Dołowy, K. and Szewczyk, A. Matrix Mg2+ regulates mitochondrial ATP-dependent potassium channel from heart. FEBS Lett. 579 (2005) 1625-1632.
  • 32. Kulawiak, B. and Bednarczyk, P. Reconstitution of brain mitochondria inner membrane into planar lipid bilayer Acta Neurobiol. Exp. (Wars). 65 (2005) 271-276.
  • 33. Hordejuk, R., Szewczyk, A. and Dołowy K. The heterogeneity of ion channels in chromaffin granule membranes. Cell. Mol. Biol. Lett. 11 (2006) 312-325.
  • 34. Cabantchik, Z.I. and Greger, R. Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol. 262 (1992) 803-827.
  • 35. Jentsch, T.J., Stein, V., Weinreich, F. and Zdebik, A.A. Molecular structure and physiological function of chloride channels. Physiol. Rev. 82 (2002) 503-568.
  • 36. Beavis, A.D. and Davatol-Hag, H. The mitochondrial inner membrane anion channel is inhibited by DIDS. J. Bioenerg. Biomembr. 28 (1996) 207-214.
  • 37. Huang, S.G. and Klingenberg, M. Chloride channel properties of the uncoupling protein from brown adipose tissue mitochondria: a patch-clamp study. Biochemistry 35 (1996) 16806-16814.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-ed372855-87a9-4659-be73-9ce146c10811
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.