Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Annexin VI (AnxVI), an Ca2+- and phospholipid-binding protein, interacts in vitro with ATP in a calcium-dependent manner. Experimental evidence indicates that its nucleotide-binding domain which is localized in the C-terminal half of the protein differs structurally from ATP/GTP-binding motifs found in other nucleotide-binding proteins. The amino-acid residues of AnxVI directly involved in ATP binding have not been yet defined. Binding of ATP to AnxVI induces changes in the secondary and tertiary structures of protein, affecting the affinity of AnxVI for Ca2+ and, in consequence, influencing the Ca2+ -dependent activities of AnxVI: binding to F-actin and to membranous phospholipids, and self-association of the annexin molecules. These observations suggest that ATP is a functional ligand for AnxVI in vivo, and ATP-sensitive AnxVI may play the role of a factor coupling vesicular transport and calcium homeostasis to cellular metabolism.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.801-812,fig.
Twórcy
autor
- M.Nencki Institute of Experimental Biology, L.Pasteura 3, 02-093 Warsaw, Poland
autor
autor
autor
autor
autor
Bibliografia
- 1. Raynal. P. & Pollard, H.B. (1994) Annexins: The problem of assessing the biological role for a gene family of multifunctional calcium- and phospholipid-binding proteins. Biochim Biophys. Acta 1197, 63-93.
- 2. Gerke, V. & Moss, S.E (1997) Annexins and membrane dynamics. Biochim. Biophys. Acta 1357, 129-154.
- 3. Bandorowicz-Pikula, J. & Awasthi, Y.C. (1997) Interaction of annexins IV and VI with ATP. An alternative mechanism by which a cellular function of these calcium- and membrane- binding proteins is regulated. FEBSLett 409, 300-306.
- 4. Bandorowicz-Pikula, J., Wrzosek, A., Pikula, S. & Awasthi, Y.C. (1997) Fluorescence spectroscopic studies on interactions between porcine liver annexin VI and nucleotides — a possible role for a tryptophan residue. Eur. J. Biochem. 248, 238-244.
- 5. Bandorowicz-Pikula. J. & Pikula, S. (1998) Adenosine 5'-triphosphate - a new regulator of annexin VI function. Acta Biochim. Polon. 45, 735-744.
- 6. Szewczyk, A. & Pikula, S. (1998) ATP - an intracellular metabolic messenger. Biochim. Biophys. Acta 1365, 333-353.
- 7. Bandorowicz-Pikula, J. & Pikula, S. (1998) Modulation of annexin Vl-driven liposome aggregation by ATP. Biochimie 80, 613-620.
- 8. Bandorowicz-Pikula, J. (1998) A nucleotide- binding domain of porcine liver annexin VI. Proteolysis of annexin VI labeled with 8-azido-ATP, purification of proteolytic fragments by affinity chromatography on ATP- agarose and fluorescence studies. Mol Cell Biochem. 181, 11-20.
- 9. Danieluk, M., Bus, R., Pikula, S. & Bandorowicz-Pikula, J. (1999) Affinity labeling of annexin VI with a triazine dye, Cibacron blue 3GA. Possible interaction of the dye with C-terminal nucleotide-binding site within the annexm molecule. Acta Biochim. Polon. 46, 419-429.
- 10. Danieluk, M., Pikula, S. & Bandorowicz- Pikula, J. (1999) Annexin VI interacts with adenine nucleotides and their analogs. Biochimie 81, 717-726.
- 11. Simon, J., Webb, T.E., King, B.F., Burnstock, G. & Barnard, E.A. (1998) Characterization of a recombinant P2Y purinoreceptor. Eur. J. Pharmacol. 291, 281-289.
- 12. Huang, S.-G., Weisshart, K. & Fanning, E. (1998) Characterization of the nucleotide binding properties of SV40 T antigen using fluorescent 3' (2' KH2,4,6-trinitrophenyl)adenine nucleotide analogues. Biochemistry 37, 15336-15344.
- 13. Walker, J.E., Saraste, M., Runswick, M.J. & Gay, N.J. (1982) Distantly related sequences in the a- and /J-subunits of ATP synthase, myosin, kinases and other ATP requiring enzymes and a common nucleotide binding fold. EMBO J. 1, 945-951.
- 14. Traut, T.W. (1994) The functions and consensus motifs of nine types of peptide segments that form different types of nucleotide-binding sites. Eur. J. Biochem. 222, 9-19.
- 15. Cohen, B.E., Lee, G., Arispe, N. & Pollard, H.B.(1995) Cyclic 3'-5'-adenosine monophosphate binds to annexin I and regulates calcium-dependent membrane aggregation and ion channel activity. FEBS Lett. 377, 444-450.
- 16. Fan, H., Josic, D., Lim, Y.P. & Reutter, W. (1995) cDNA cloning and tissue-specific regulation of expression of rat calcium-binding protein 65/67. Identification as a homologue of annexin VI. Eur. J. Biochem 230, 741-751.
- 17. Moss, S.E., Crompton, M.R. & Crumpton, M.J. (1988) Molecular cloning of murine p68, a Ca -binding protein of the lipocortin family. Eur. J. Biochem. 177, 21-27.
- 18. Comera, C. & Creutz, C.E. (1992) Partial sequence of bovine annexin VI; in The Annexins, (Moss. S.E., ed.) pp. 86-88, Portland Press, London.
- 19. Crompton, M.R., Owens, R.J., Totty, N.F., Moss, S.E., Waterfield, M.D. & Crumpton, M.J. (1988) Primary structure of the human, membrane-associated Ca2*-binding protein p68: A novel member of a protein family. EMBOJ. 7,21-27.
- 20. Siidhof, T.C., Slaughter, C.A., Leznicki, I., Barjon, P. & Reynolds, G.A. (1988) Human 67-kDa calelectrin contains a duplication of four repeats found in 35-kDa lipocortins. Proc. Natl Acad. Sci. U.S.A 85, 664-668.
- 21. Avila-Sakar, A.J., Creutz, C.E. & Kretsinger, R.H. (1998) Crystal structure of bovine anne- xin VI in a calcium-bound state 1. Biochim. Biophys. Acta 1387, 103-116.
- 22. Benz, J., Bergner, A, Hofmann, A., Demange, P., Gottig, P., Liemann, S., Huber, R. & Voges, D. (1996) The structure of recombinant human annexin VI in crystals and membrane- bound. J. Mol Biol 260, 638-643.
- 23. Creutz, C.E., Tomsing, J.L., Snyder, S.L., Gauthier, M.-C., Skouri, F., Beisson, J. & Cohen, J. (1998) The copines, a novel class of C2 domain-containing, calcium-dependent, phos- pholipid-binding proteins conserved from Paramecium to humans. J. Biol Chem. 273, 1393-1402.
- 24. Swaiijo, M.A. & Seaton, B.A (1994) Annexin structure and membrane interactions: A molecular perspective. Annu. Rev. Biophys. Biomolec. Struct. 23, 193-213.
- 25. Swaiijo, M.A., Concha, N.O., Kaetzel, M.A., Dedman, J.R. & Seaton, B.A. (1995) Ca2+ -bridging mechanism and phospholipid head group recognition in the membrane- binding protein annexin V. Nature Struct Biol 11, 968-974.
- 26. Benz, J. & Hofmann, A. (1997) Annexins: From structure to function. Biol Chem. 378, 177-183.
- 27. Liemann, S. & Huber, R. (1997) Three-dimensional structure of annexins. Cell Mol Life ScL 53, 516-521.
- 28. Jones, P.G., Moore, G.J. & Waisman, D.M. (1992) A nonapeptide to the putative F-actin binding site of annexin-II tetramer inhibits its calcium-dependent activation of actin filament bundling. J. Biol Chem. 267, 13993-13997.
- 29. Ishitsuka, R., Kojima, K., Uteumi, H., Ogawa, H. & Matsumoto, I. (1998) Glycosaminoglycan binding properties of annexin IV, V, and VI. J. Biol Chem. 273, 9935-9941.
- 30. Kas8am, G., Manro, A., Braat, C.E., Louie, P., Fitzpatrick, S.L. & Waisman, D.M. (1997) Characterization of the heparin binding properties of annexin II tetramer. J. Biol Chem. 272,15093-15100.
- 31. KasBam, G., Choi, K.-S., Ghuman, J., Kang, H. M., Fitzpatrick, S.L., Zackson, T., Zackson, S., Toba, M., Shinomiya, A. & Waisman, D.M. (1998) The role of annexin II tetramer in the activation of plasminogen. J. Biol Chem. 273, 4790-4799.
- 32. Bandorowicz-Pikula, J., Wrzosek, A., Makow- ski, P. & Pikula, S. (1997) The relationship between the binding of ATP and calcium to annexin IV. Effect of nucleotide on the calcium-dependent interaction of annexin with phosphatidylserine. Mol Membr. Biol 14, 179-186.
- 33. Han, H.-Y., Lee, Y.-H., Oh, J.-Y., Na, D.-S. & Lee, B.-J. (1998) NMR analyses of the interacoptions of human annexin I with ATP, Ca , and Mg2+ FEBSLetL 425, 523-527.
- 34. Caohuy, H., Srivastava, M. & Pollard, H.B. (1996) Membrane fusion protein synexin 2+ (annexin VII) as a Ca /GTP sensor m exo- cytotic secretion. Proc. Natl Acad. Sci. U.S.A. 93, 10797-10802.
- 35.Shin, H. & Brown, R.M., Jr. (1999) GTPase activity and biochemical characterization of a recombinant cotton fiber annexin. Plant Physiol 119, 925-934.
- 36. Buchet, R., Jona, I. & Martonosi, A. (1992) The effect of dicyclohexylcarbodiimide and cyclopiazonic acid on the difference FTIR spectra of sarcoplasmic reticulum induced by photolysis of ATPtEtCPhNOg)] and caged- Ca2*. Biochim. Biophys. Acta 1104,207-214.
- 37. Trouiller, A., Gerwert, K. & Dupont, Y. (1996) A time-resolved Fourier transformed infrared difference spectroscopy study of the sarco- 2+ plasmic reticulum Ca ATPase: Kinetics of the high-affinity calcium binding at low temperature. Biophys. J. 71, 2970-2983.
- 38. Raimbault, C., Buchet, R. & Vial, C. (1996) Changes of creatine kinase secondary structure induced by the release of nucleotides from caged compounds. An infrared differ- ence-spectroscopy study. Eur. J. Biochem 240, 134-142.
- 39. Raimbault, C., Besson, F. & Buchet, R. (1997) Conformational changes of arginine kinase induced by the photochemical release of nucleotides from caged-nucleotides. An infrared dif- ference-spectroscopy investigation. Eur. J. Biocherru 244, 343-351.
- 40.Silvestro, L & Axelsen, P.H. (1999) Fourier transform infrared linked analysis of conformational changes in annexin V upon membrane binding. Biochemistry 38, 113- 121.
- 41. Wu, F., Flach, C.R., Seaton, B.A., Mealy, T.R. & Mendelsohn, R. (1999) Stability of annexin V in ternary complexes with Ca and anionic phospholipids: IR studies of monolayer and bulk phases. Biochemistry 38, 792-799.
- 42. Mani, R.S. & Kay, C.M. (1989) Purification and spectral studies on the Ca -binding properties of a 67 kDa calcimedin. Biochem. J. 259, 799-804.
- 43. Bandorowicz-Pikula, S., Danieluk, M., Wrzo- sek, A., Bu6, R. & Pikula, S. (1998) Interaction of annexin VI with membranes. Regulation by ATP in vitro. Cell Mol Biol Lett. 3,365-374.
- 44. Bandorowicz-Pikula, J. & Pikula, S. (1998) Annexin and ATP in membrane traffic: A comparison with membrane fusion machinery. Acta Biochim. Polon. 45, 721-733.
- 45. Tagoe, C.E., Boustead, C.M., Higgins, S.J. & Walker, J.H. (1994) Characterization and im- munolocalization of rat liver annexin VI. Biochim. Biophys. Acta 1192, 272-280.
- 46. Hoyal, C.R., Thomas, A.P. & Forman, H.J. (1996) Hydroperoxide-induced increases in intracellular calcium due to annexin VI translocation and inactivation of plasma membrane Ca2*-ATPase. J. Biol Chem. 271, 29205-29210.
- 47. McClung, A.D., Carroll, A.D. & Battey, N.H. (1994) Identification and characterization of ATPase activity associated with maize {Zea mays) annexins. Biochem. J. 303, 709-712.
- 48. Carroll, A.D., Moyen, C., Van Kesteren, P., Tooke, F., Battey, N.H. & Brownlee, C. (1998) Ca , annexins and GTP modulate exocytosis from maize root cap protoplasts. Plant Cell 10, 1267-1276.
- 49. Pollard, H.B., Caohuy, H., Minton, A.P. & Srivastava, M. (1998) Synexin (annexin VID hypothesis for Ca /GTP-regulated exocytosis. Adv. Pharmacol 42, 81-87.
- 50.Inui, M., Watanabe, T. & Sobue, K. (1994) Annexin VI binds to a synaptic vesicle protein, synapsin I. J. Neurochem. 63, 1917-1923.
- 51. Hosaka, M. & Siidhof, T.C. (1998) Synapsins I and II are ATP-binding proteins with differential Ca2' regulation. J. Biol Chem. 273, 1425-1429.
- 52. Davis, A.J., Butt, J.T., Walker, J.H., Moss, S.E. & Gawler, D.J. (1996) The Ca2+-depend- A Dent lipid binding domain of pi20 mediatesprotein-protein interactions with Ca -dependent membrane-binding proteins. Evidence for a direct interaction between annexin VI and P120GAP. J. Biol Chem. 271, 24333-24336.
- 53. Chow, A., Davis, A.J. & Gawler, D.J. (1999) Investigating the role played by protein-lipid and protein-protein interactions in the mem- brane association of the pi20 CaLB domain. Cell Signal 11, 443-451.
- 54. Turpin, E.. Russo-Marie, F., Dubois, T., de Paillerets, C., Alfsen, A. & Bomsel, M. (1998) In adrenocortical tissue, annexins II and VI are attached to clathrin coated vesicles in a cal- cium-independent manner. Biochim. Biophys. Acta 1402, 115-130.
- 55. Arispe, N., Rojas, E., Genge, B.R., Wu, L.N. & Wuthier, R.E. (1996) Similarity in calcium channel activity of annexin V and matrix vesicles in planar lipid bilayers. Biophys. J. 71, 1764-1775.
- 56. Trotter, P.J., Orchard, M.A. & Walker, J.H. (1997) Relocation of annexin V to platelet membranes is a phosphorylation-dependent process. Biochem. J. 328, 447-452.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-ec4fa232-9521-470d-a292-996732213666