Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 58 | 2 | 181-184
Tytuł artykułu

AAN82231 protein from uropathogenic E. coli CFT073 is a close paralog of DsbB enzymes and does not belong to the DsbI family

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Dsb proteins control the formation and rearrangement of disulfide bonds during the folding of membrane and exported proteins. DsbA is an oxidant that catalyzes formation of disulfide bonds in newly synthesized, and yet unfolded proteins. In order to act catalytically again, it has to be reoxidized by a transmembrane protein DsbB characterized by two pairs of disulfides. DsbB is related to another protein family Dsbl, characterized by the presence of only one disulfide, and an additional C-terminal beta-propeller domain. The protein AAN82231 from E. coli strain CFT073 has been recently described as a new member of the Dsbl family (Grimshaw et al., 2008). It was found that AAN82231 forms a functional redox pair with DsbL - a newly described DsbA-like protein. Here, we report that AAN82231 shares no characteristic features with the Dsbl proteins. Instead, according to phylogenetic analyses AAN82231 clearly belongs to another, previously described subfamily of DsbB paralogs. To facilitate classification of DsbB and Dsbl homologs, we propose a new nomenclature system and present an updated phylogenetic analysis of the DsbB superfamily, which comprises the following families: "orthodox" DsbB, its paralogs now named DsbB2 (including AAN82231), Dsbl and two groups of so far uncharacterized DsbB paralogs termed DsbB3 and DsbB4. We have also developed a web server dedicated to phylogenetic assignment of DsbB/Dsbl candidate proteins that will be identified in the future.
Wydawca
-
Rocznik
Tom
58
Numer
2
Strony
181-184
Opis fizyczny
p.181-184,fig.,ref.
Twórcy
autor
  • International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, 02-109 Warsaw, Poland
autor
Bibliografia
  • Altschul S.F., T.L. Madden, A.A. Schaffer, J. Zhang, Z. Zhang, W. Miller and D.J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402.
  • Arai M., H. Mitsuke, M. Ikeda, J.X. Xia, T. Kikuchi, M. Satakc and T. Shimizu. 2004. ConPred II: a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res. 32: W390-393.
  • Godlewska R., A. Dzwonek, M. Mikula, J. Ostrowski, M. Pawlowski, J.M. Bujnicki and E.K. Jagusztyn-Krynicka. 2006. Helicobacter pylori protein oxidation influences the colonization process. Int. J. Med. Microbiol. 296: 321-324.
  • Grimshaw J.P., C.U. Stirnimann, M.S. Brozzo, G. Malojcic, M.G. Grutter, G. Capitani and R. Glockshuber. 2008. DsbL and DsbI form a specific dithiol oxidase system for periplasmic arylsulfate sulfotransferase in uropathogenic Escherichia coli. J. Mol. Biol. 380: 667-680.
  • Guindon S. and O. Gascuel. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52: 696-704.
  • Ito K. and K. Inaba. 2008. The disulfide bond formation (Dsb) system. Curt: Opin. Struct. Biol. 18: 450-458.
  • Kimball R.A., L. Martin and M.H. Saier, Jr. 2003. Reversing transmembrane electron flow: the DsbD and DsbB protein families. J. Mol. Microbiol. Biotechnol. 5: 133-149.
  • Misslakas D., C. Georgopoulos and S. Raina. 1993. Identification and characterization of the Escherichia coli gene dsbB, whose product is involved in the formation of disulfide bonds in vivo. Proc. Natl. Acad. Sci. USA 90: 7084-7088.
  • Nakamoto H. and J.C. Bardwell. 2004. Catalysis of disulfide bond formation and isomerization in the Escherichia coli periplasm. Biochim. Biophys. Acta 1694: 111-119.
  • Raczko A.M., J.M. Bujnicki, M. Pawlowski, R. Godlewska, M. Lewandowska and E.K. Jagusztyn-Krynicka. 2005. Characterization of new DsbB-like thiol-oxidoreductases of Campylobacter jejuni and Helicobacter pylori and classification of the DsbB family based on phylogenomic, structural and functional criteria. Microbiology 151: 219-23 1.
  • Soding J. 2005. Protein homology detection by HMM-HMM comparison. Bioinformatics 21: 951-960.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-e8ef4d7a-2c3d-492d-b85e-a216e51dd796
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.