Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The Helicobacter pylori infections are followed by an infiltration of the gastric mucosa by neutrophils and macrophages. Accumulation of phagocytes enables them to interact with H. pylori, but a great number of infected subjects cannot eradicate these bacteria. The H. pylori inhibits its own uptake by blocking the function of phagocytes. The anti-phagocytic mechanism depends on bacterial surface structures and the presence of the cag pathogenicity island (PAI). The role of H. pylori lipopolysaccharide (LPS), during phagocytosis of these bacteria is not clear. LPS may mediate direct bacteria/phagocyte interactions and it may also regulate antibacterial activity of the phagocytes. In this study we investigated the influence of H. pylori LPS on phagocytosis of these bacteria. The H. pylori LPS inhibited an ingestion of these microbes by human peripheral blood granulocytes. This was correlated with a diminished ability of phagocytes to reduce MTT-tetrazolium salt. The anti-phagocytic effect of H. pylori LPS was reduced by recombinant lipopolysaccharide binding protein (rLBP). It is possible that in vivo H. pylori LPS may diminish elimination of these bacteria from the gastric mucosa promoting an infection persistence. However, LBP may modulate the uptake of H. pylori due to neutralization of anti-phagocytic effect of its LPS.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.185-192,fig.,ref.
Twórcy
autor
- University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
autor
autor
autor
autor
autor
autor
autor
autor
Bibliografia
- Allen L.A.H., L.S. Schlesinger and B. Kang. 2000. Virulent strain of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med. 191: 115-127.
- Allen L.A. 2007. Phagocytosis and persistence of Helicobacter pylori. Cell. Microbiol. 9: 817-828.
- Appelmelk B.J., S.L. Martin, M.A. Monteiro, C.A. Clayton, C.H. Hokke, M.B. Perry, C.M. Vandenbrouche-Grauls and J.G. Kusters. 1999. Phase variation in Helicobacter pylori lipopolysaccharide due to changes in the lengths of poly(C) tracts in α-fucosylotransferase genes. Infect, Immun. 67: 5361-5366.
- Aspinall C.O. and M.A. Monteiro. 1996. Lipopolysaccharides of Helicobacter pylori strains P466 and MO19: structures of the O antigen and core oligosaccharide regions. Biochemistry 35: 2498-2504.
- Bennet M.J. and I.S. Roberts. 2005. Identification of a new sialic acid-binding protein in Helicobacter pylori. FEMS Immunol. Med. Microbiol. 44: 163-169.
- Blaser M.J. 2005. The biology of cag in Helicobacter pylori -human interaction. Gastroenterology 128: 1512-1515.
- Blaser M.J. and D.E. Berg. 2001. Helicobacter pylori genetic diversity and risk of human disease. J. Clin. Invest. 107: 767-773.
- Boughan P.K., R.M. Argent, M. Body-Malapel, J.H. Park, E.K. Erwings, A.G Bowie, S.J. Ong, S.J. Cook, O.E. Sorensen, B.A. Manzo and others. 2006. Nucleotide-binding oligomerization domain-1 and epidermal growth factor receptor: critical regulators of beta-defensis during Helicobacter pylori infection. J. Biol. Chem. 281: 11637-11648.
- Briede J.J., R.G. Pot, E.J. Kuipers, A.H. van Vliet, J.C. Klejnjens and J.G. Kusters. 2005. The presence of cag pathogenicity island is associated with increased superoxide anion radical scavenging activity by Helicobacter pylori. FEMS Immunol. Med. Microbiol. 44: 227-232.
- Chmiela M., E. Czkwianianc, T. Wadstrom and W. Rudnicka. 1997. Role of Helicobacter pylori surface structures in bacterial interaction with macrophages. Gut 40: 20-24.
- Cunningham M.D., C. Seachord, K. Ratchiffe, B. Bainbrridge, A. Amffo and R.P. Darveau. 1996. Helicobacter pylori and Porphyromonas gingivalis lipopolysaccharides are poorly transferred to recombinant soluble CD 14. Infect. Immun. 64: 3601-3608.
- Fantini J., N. Garmy and N. Yahi. 2006. Prediction of glyco-lipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpA, a protein involved in he adhesion of Helicobacter pylori to gastrointestinal cells. Biochemistry 45: 10957-10962.
- Ferrero R.L. 2005. Innate immune recognition of the extracellular mucosal pathogen Helicobacter pylori. Mol. Immunol. 42: 879-885.
- Grebowska A., T. Rechcinski, A. Moran, E. Czkwianianc, L. Bak-Romaniszyn, A. Owczarek, M. Dziuba, M. Kowalewicz-Kulbat, M. Druszczynska, M. Krzeminska-Pakula and others. 2006. Increased levels of immunoglobuline and non-immunoglobuline markers of host response to H. pylori LPS in the patients with coronary artery disease (CAD). Curr. Trends Immunol. 7: 85-96.
- Gutsmann T., M. Muller., S. F. Caroll., R. C. Mackenzie and U. Weydel. 2001. Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells. Infect. Immun. 69: 6942-6950.
- Hatakayema M. and T. Brzozowski. 2006. Pathogenesis of Helicobacter pylori infection. Helicobacter 11 (Suppl. l): 14-20.
- Hofman V., V. Ricci, B. Mograbi, P. Brest, F. Luciano, P. Boquet, B. Rossi, P. Auberger and P. Hofman. 2001. Helicobacter pylori lipopolysaccharide hinders polmorphonuclear leucocyte apoptosis. Lab. Invest. 81: 375-384.
- Jerala R. 2007. Structural biology of the LPS recognition. J. Med. Microbiol. 297: 353-363.
- Kawai, T. and S. Akira. 2005. Pathogen recognition with Toll-like receptor. Curr. Opin. Immunol. 17: 338-344.
- Khamri W., A.P. Moran, M.L. Worku, Q.N. Karim, M.M. Walker, H. Annuk, J.A. Ferris, B.J. Appelmelk, P. Eggleton, K.B. Reid and others. 2005. Variations in Helicobacter pylori lipopolysaccharide to evade the innate immune component surfactant protein D. Infect. Immun. 73: 7677-7686.
- Lee S.K. and Ch. Josenhans. 2005. Helicobacter pylori and the innate immune system. Int. J. Med. Microbiol. 295: 325-334.
- Lepper P.M., M. Triantafilou, Ch. Schumann, E.M. Schneider and K. Triantafilou. 2005. Lipopolysaccharides from Helicobacter pylori can act as antaginsts for Toll-like receptor 4. Cell. Microbiology 7: 519-528.
- Ljungh A., A.P. Moran and T. Wadstrom. 1996. Interaction of bacterial adhesions with extracellular matrix and plasma proteins: pathogenic implications and therapeutic possibilities. FEMS Immunol. Med. Microbiol. 16: 117-126.
- Mahdavi J., B. Sonden, M. Hurtig, F.O. Olfat, L. Forsberg and N. Roche. 2002. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297: 573-578.
- Medvedev A.E., K.M. Kopydlowski and S.N. Vogel. 2000. Inhibition of lipopolysaccharide-induced signal transduction in endotoxin-tolerized mouse macrophages: dysregulation of cytokine, chemokine, and Toll-like receptor 2 and 4 gene expression. J. Immunol. 164: 5564-5574.
- Moran A.P. and G.O. Aspinall. 1998. Unique structural and biological features of Helicobacter pylori lipopolysaccharides. Prog. Clin. Biol. Res. 397: 37-49.
- Muotiala A., I.M. Helander, L. Pyhala, T.U. Kosunen and A.P. Moran. 1992. Low biological activity of Helicobacter pylori lipopolysaccharide. Infect. Immun. 60: 1714-1716.
- Neumann M., A. Foryst-Ludwig, S. Klor, K. Schweitzer and M. Naumann. 2006. The PAK1 autoregulatory domain is required for interaction with NIK in Helicobacter pylori-induced NF-kappa B activation. Biol. Chem. 387: 79-86.
- Nomura F., S. Akashi, Y. Sakao, S. Sato, T. Kawai, M. Matsumoto, K. Nakanishi, M. Kimoto, K. Miyake, K. Takeda and others. 2000. Endotoxin tolerance in mouse peritoneal macrophages correlates with down-regulation of surface Toll-like receptor 4 expression. J. Immunol. 164: 3476-3479.
- Prohinar P., F. Re, R. Widstrom, Zhang DeSheng, A. Teghanemt, J.P. Weiss and T. Gioannini. 2007. Specific high affinity interactions of monomeric endotoxin protein complexes with Tolllike receptor 4 ectodomain. J. Biol. Chem. 282: 1010-1017.
- Rechciński T., M. Chmiela, E. Malecka-Panas, I. Planeta-Malecka and W. Rudnicka. 1997. Serological indicators of Helicobacter pylori infections in adult dyspeptic patients and healthy blood donors. Microbiol. Immunol. 41: 387-393.
- Romarao N., S.D. Gray-Owen, S. Backert and T.F. Meyer. 2000. Helicobacter pylori inhibits phagocytosis by proffesional phagocytes involving type IV secretion components. Mol. Microbiol. 37: 1389-1404.
- Rudnicka W., E. Czkwianianc, I. Planeta-Malecka, M. Jurkiewicz, M. Wiśniewska, T. Cieślikowski, B. Różalska, T. Wadstrom and M. Chmiela. 2001. A potential double role of anti-Lewis X antibodies in Helicobacter pylori-associated gastro-duodenal diseases. FEMS Immunol. Med. Microbiol. 30: 121-125.
- Smith M.F.Jr., A. Mitchell, G. Li, S. Ding, A.M. Fitzmaurice, K. Ryan, S. Crowe and J. B. Goldberg. 2003. Toll-like receptor TLR2 and TLR5 but not TLR4, are required for Helicobacter pylori-induced NF-kappa B activation and chemokine expression by epithelial cells. J. Biol. Chem. 278: 32552-32560.
- Strapagiel D., A. Grębowska, B. Różalska, L. Bąk-Romaniszyn, E. Czkwianianc, I. Planeta-Malecka., T. Rechciński, W. Rudnicka and M. Chmiela. 2006. Natural mannose-binding lectin (MBL) down-regulates phagocytosis of Helicobacter pylori. Pol. J. Microbiol. 55: 95-101.
- Suganuma M., T. Kuzuhara, K. Yamaguchi and H. Fujiki. 2006. Carcinogenic role of tumor necrosis factor-alpha inducing protein in human stomach. J. Biochem. Mol. Biol. 39: 1-8.
- Turina M., F.N. Miller, P.P. McHugh, W.G. Cheadle and H.C. Polk Jr. 2005. Endotoxin inhibits apoptosis but induces primary necrosis in neutrophils. Inflammation 29: 55-63.
- Underhill D.M. and B. Gantner. 2004. Integration of Toll-like receptor and phagocytic signaling for tailored immunity. Microbes Infect. 6: 1368-1373.
- Valkonen K. M., T. Wadstrom and A. P. Moran. 1994. Interaction of lipopolysaccharides of Helicobacter pylori with the basement membrane protein laminin. Infect. Immun. 62: 3640-3648.
- Vesy C. J., R. L. Kitchens., G. Woltbauer., J. J. Alberts and R.S. Munford. 2000. Lipopolysaccharide recognition: CD 14, TLRs and LPS-activating cluster. Trends Immunol. 23: 301-304.
- Wang G., R.C. Conover, A.A. Olaczek, P. Alamuri, M.K. Johnson and R.J. Maier. 2005. Oxidative stress defense mechanisms to counter iron-promoted DNA damage in Helicobacter pylori. Free Radic. Res. 39: 1183-1191.
- Waltz A., S. Odenbreit, J. Mahdavi, T. Boren and S. Ruhl. 2005. Identification and characterization of binding properties of Helicobacter pylori by glycoconjugate arrays. Glycobiology 15: 700-708.
- Wurfel M.M., E. Hailman and S.D. Wright. 1995. Soluble CD14 acts as a shuttle in the neutralization of lipopolysaccharide (LPS) by LPS-binding protein and reconstituted high density lipoprotein. J. Exp. Med. 181: 1743-1754.
- Yu B. and S.D. Wright. 1996. Catalytic properties of lipopolysaccharide (LPS) binding protein. Transfer of LPS to soluble CD 14. J. Biol. Chem. 271: 4100-4105.
- Zweiger J., R. R. Schumann and J. R. Weber. 2006. The role of lipopolysaccharide-binding protein in modulating the innate immune response. Microbes Infect. 8: 946-952.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-e557bb4c-47eb-4e7d-8013-e5767727d749