Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Proteolytic activity is regarded as one of the most important virulence factors of Candida albicans. Several authors recently demonstrated that some karyotypes and genotypes harbouring a group I self-splicing intron (CaLSU) located in the gene encoding the large rRNA subunit showed a high level of proteinase production. The aim of this study was to investigate the correlation between the level of proteinase production and the presence of the CaLSU intron in C. albicans isolates originating from the blood and respiratory tracts (sputum/pharyngeal swabs) of patients with and without oropharyngeal candidosis. The results revealed statistically significant differences in genotype distribution and the level of proteinase production between the C. albicans isolates obtained from blood and from the respiratory tract. Genotype A, without the intron, was prevalent in all groups of strains and its prevalence was higher among isolates from blood (75%) and from patients with candidosis (80%) compared with strains from colonisation (as opposed to infection) (57.8%). Isolates from blood produced significantly less proteinase than isolates from the respiratory tract (p<0.02), and this difference should be attributed to lower proteinase production of genotypes B and C from blood compared with genotypes B and C from the respiratory tract (p<0.01). The higher proteinase production of genotype B than of genotype A was found among respiratory tract isolates only. The presented data indicate that the association between proteinase production and the CaLSU intron depends on the strains' population. Further study is needed on well-defined groups of clinical isolates to elucidate whether the observed diversity in proteinase production plays a role in the selection of strains inducing bloodstream infections.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.27-33,fig.,ref.
Twórcy
autor
- Medical University of Wroclaw, Chalubinskiego 4, 50-368 Wroclaw, Poland
autor
autor
autor
autor
autor
Bibliografia
- Blignaut E., C. Pujol, S. Lockhart, S. Joly and D.R. Soll. 2002. Ca3 fingerprinting of Candida albicans isolates from human immunodeficiency virus-positive and healthy individuals reveals a new clade in South Africa. J. Clin. Microbiol. 40: 826-836.
- De Bernardis F., M. Boccanera, L. Rainaldi, C.E. Guerra, I. Quinti and A. Cassonc. 1992. The secretion of aspartyl proteinase, a virulence enzyme, by isolates of Candida albicans from the oral cavity of HIV-infected subjects. Eur. J. Epidemiol. 8: 362-367.
- Girish Kumar C.P., A. M. Hanafy, M. Katsu, Y. Mikami, and T. Menon. 2006. Molecular analysis and susceptibility profiling of Candida albicans isolates from immunocompromised patients in South India. Mycopathologia 161: 153-159.
- Hube B., M. Monod, D.A. Schofield, A.J. Brown, and N.A. Gow. 1994. Expression of seven members of the gene family encoding secretory aspartyl proteinases in Candida albicans. Mol. Microbiol. 14: 87-99.
- Hube B, C.J. Turver, F.C. Odds, H. Eiffert , G.J. Boulnois, H. Kochel, and R. Ruchel. 1991. Sequence of the Candida albicans gene encoding the secretory aspartate proteinase. J. Med. Vet. Mycol. 29: 129-132.
- Jayaguru P. and M. Raghunathan. 2006. Group I intron renders differential susceptibility of Candida albicans to Bleomycin. Mol. Biol. Rep. 34: 11-17.
- Karahan Z.C. and N. Akar. 2005. Subtypes of genotype A Candida albicans isolates determined by restriction endonuclease and sequence analyses. Microbiol. Res. 160: 361-366.
- Karahan Z.C, H. Guriz, H. Agirbasli, N. Balaban, J.S. Gocmen, D. Aysev and N. Akar. 2004. Genotype distribution of Candida albicans isolates by 25S intron analysis with regard to invasiveness. Mycoses 47: 465-9.
- Kuriyama T., D.W. Williams and M.A. Lewis. 2003. In vitro secreted aspartyl proteinase activity of Candida albicans isolated from oral diseases and healthy oral cavities. Oral Microbiol. Immunol. 18: 405-407.
- Lott T.J., B.P. Holloway, D.A. Logan, R. Fundyga and J. Arnold. 1999. Towards understanding the evolution of the human commensal yeast Candida albicans. Microbiology 145: 1137-1143.
- McCullough M.J., K.V. Clemons and D.A. Stevens. 1999a. Molecular epidemiology of the global and temporal diversity of Candida albicans. Clin. Infect. Dis. 29: 1220-1225.
- McCullough M.J., K.V. Clemons and D.A. Stevens. 1999b. Molecular and phenotypic characterisation of genotypic Candida albicans subgroups and comparison with Candida duhliniensis and Candida stellatoidea. J. Clin. Microbiol. 37: 417-421.
- Mercure S., L. Cousineau, S. Montplaisir, P. Belhumeur and G. Lemay. 1997. Expression of a reporter gene interrupted by the Candida albicans group I intron is inhibited by base analogs. Nucleic Acids Res. 25: 431-437.
- Mercure S., S. Montplaisir and G. Lemay. 1993. Correlation between the presence of a self-splicing intron in the 25S rDNA of C. albicans and strains susceptibility to 5-fluorocytosine. Nucleic Acids Res. 21: 6020-6027.
- Millar B.C., J.E. Moore, J. Xu, M.J. Walker, S. Hedderwick and R. McMullan. 2002. Genotypic subgrouping of clinical isolates of Candida albicans and Candida duhliniensis by 25S intron analysis. Lett. Appl. Microbiol. 35: 102-106.
- Millar B.C., J. Xu, R. McMullan, M.J. Walker, S. Hedderwick and J.E. Moore. 2005. Frequency and distribution of group I intron genotypes of Candida albicans colonising critically ill patients. Br. J. Biomed. Sci. 62: 24-27.
- Monod M, B. Hube, D.Hess and D. Sanglard. 1998. Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144: 2731-2737.
- Monod M., G. Togni, B. Hube and D. Sanglard. 1994. Multiplicity of genes encoding secreted aspartic proteinases in Candida species. Mol. Microbiol. 13: 357-368.
- Naglik J., A. Albrecht, O. Bader and B. Hube. 2004. Candida albicans proteinases and host/pathogen interactions. Cell. Microbiol. 6: 915-926.
- Naglik J.R., S.J. Challacombe and B Hube. 2003. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol. Mol. Biol. Rev. 67: 400-428.
- Nawrot U., J. Skala, A. Noczynska, N. Potocka, K. Koczocik and E. Baran. 2004. Distribution of Ca.LSU intron and acid protease production by Candida albicans strains isolated from gastrointestinal tract of diabetes children. Pol. J. Microbiol. 53: 189-191.
- Pujol C, M. Pfaller and D.R. Soll. 2002. Ca3 fingerprinting of Candida albicans bloodstream isolates from the United States, Canada, South America, and Europe reveals a European clade. J. Clin. Microbiol. 40: 2729-2740.
- Qi Q.G., T. Hu and X.D. Zhou. 2005. Frequency, species and molecular characterization of oral Candida in hosts of different age in China. J. Oral. Pathol. Med. 34: 352-356.
- Remold H., H. Fasold and F. Staib. 1968. Purification and characterisation of proteolytic enzyme from Candida albicans. Biochim. Biophys. Acta 167: 399-406.
- Rose M.D., Winston, F. and Hietr, P. 1990. Methods in Yeast Genetics. A Laboratory Course Manual. Cold Spring Harbor Laboratory Press.
- Schaller M., C. Borelli, H.C. Korting and B. Hube. 2005. Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 48: 365-377.
- Sugita T., S. Kurosaka, M. Yajitate, H. Sato and A. Nishikawa. 2002. Extracellular proteinase and phospholipase activity of three genotypic strains of a human pathogenic yeast, Candida albicans. Microbiol. Immunol. 46: 881-883.
- Tamura M., K. Watanabe, Y. Mikami, K. Yazawa and K. Nishimura. 2001. Molecular characterization of new clinical isolates of C. albicans and C. dubliniensis in Japan: analysis reveals a new genotype of C. albicans with group I intron. J. Clin. Microbiol. 39: 4309-4315.
- Tavanti A., G. Pardini, D. Campa, P. Davini, A. Lupetti and S. Senesi. 2004. Differential expression of secretory aspartyl proteinase genes (SAP 1-10) in oral Candida albicans isolates with distinct karyotypes. J. Clin. Microbiol. 42: 4726-4734.
- Taylor B.N., H. Hannemann, M. Sehnal, A. Biesemeier, A. Schweizer, M. Rollinghoff and K. Schroppel. 2005. Induction of SAP7 correlates with virulence in an intravenous infection model of candidiasis but not in a vaginal infection model in mice. Infect. Immun. 73: 7061-7063.
- Xiao M., T. Li, X. Yuan, Y. Shang, F. Wang, S. Chen and Y. Zhang. 2005. A peripheral element assembles the compact core structure essential for group I intron self-splicing. Nucleic Acids Res. 33:4602-4611.
- Zhang Y. and M.J. Leibowitz. 2001. Folding of the group I intron ribozyme from the 26S rRNA gene of Candida albicans. Nucleic-Acids Res. 29: 2644-2653.
- Zhang Y., Z. Li, D.S. Pilch and M.J. Leibowitz. 2002. Pentamidine inhibits catalytic activity of group I intron Ca.LSU by altering RNA folding. Nucleic Acids Res. 30: 2961-2971.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-e1656481-3561-40ce-add0-8fc52e30ab8a