Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 69 | 2 | 207-216
Tytuł artykułu

In vitro-evaluation of lipid emulsions as vehicles for the administration of xenon: Interaction with NMDA receptors

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The noble gas xenon is an antagonist of the NMDA (N-methyl-D-aspartate)-type glutamate receptor which may account for the ideal anesthetic profile and potent neuroprotective properties demonstrated even at subanesthetic concentrations. Because lipid emulsions also promote NMDA antagonistic effects they may serve as ideal carriers for xenon. In this in vitro study, we investigated the efficacy of xenon dissolved in various lipid emulsions (Intralipid®, Lipofundin®, ClinOleic® and Abbolipid®) on NMDA-evoked currents in cultured cortical neurons. The NMDA receptor blocking property at a clinically relevant concentration seen in the lipid emulsions tested may contribute to the anesthetic, analgetic and neuroprotective effects of xenon administered by way of these lipid carriers. Abbolipid® may serve as the most acceptable carrier since the NMDA antagonistic effect of xenon was enhanced in combination with this emulsion.
Wydawca
-
Rocznik
Tom
69
Numer
2
Strony
207-216
Opis fizyczny
p.207-216,fig.,ref.
Twórcy
autor
  • SLK-Kliniken Heilbronn, Bad Friedrichshall, Germany
autor
autor
autor
Bibliografia
  • Antognini JF, Carstens E (2002) In vivo characterization of clinical anaesthesia and its components. Br J Anaesth 71: 148-163.
  • Beyer C, Pilgrim C, Reisert I (1991) Dopamine content and metabolism in mesencephalic and diencephalic cell cul­tures: sex differences and effects of sex steroids. J Neurosci 11: 1325-1333.
  • Czyzewski K, Lalowski MM, Pfeffer A, Barcikowska M (2001) Lipid metabolism parameters in patients with Alzheimer's disease and their first degree relatives. Acta Neurobiol Exp (Wars) 61: 21-26.
  • de Sousa SLM, Dickinson R, Lieb WR, Franks NP (2000) Contrasting synaptic actions of the inhalational general anesthetics isoflurane and xenon. Anesthesiology 92: 1055-1066.
  • Decker DE, Vroegop SM, Goodman TG, Peterson T, Buxser SE (1995) Kinetics and thermodynamics of emulsion delivery of lipophilic antioxidants to cells in culture. Chem Phys Lipids 76: 7-25.
  • Dutta S, Pharm B, Ebling W (1997) Emulsion formulation reduces propofol's dose requirements and enhances safety. Anesthesiology 87: 1394-1405.
  • Eger EII, Koblin DD, Harris RA (1997) Hypothesis inhaled anesthetics produce immobility and amnesia by different mechanisms at different sites. Anesth Analg 84: 915-918.
  • Franks NP, Lieb WR (1994) Molecular and cellular mecha­nisms of general anaesthesia. Nature 367: 607-615. Franks NP, Dickinson R, de Sousa SLM, Hall AC, Lieb WR (1998) How does xenon produce anaesthesia? Nature 396: 324.
  • Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolu­tion current recording from cells and cell-free membrane patches. Pflugers Arch 391: 85-100.
  • Harada H, Kelly PJ, Cole DJ, Drummond JC, Patel PM (1999) Isoflurane reduces N-methyl-D-aspartate tocicity in vivo in the rat cerebral cortex. Anesth Analg 89: 1442-1447.
  • Lavini C, Payne GS, Leach MO, Bifone A (2000) Intravenous delivery of hyperpolarized 129Xe: a compartment model. NMR Biomed 13: 238-244.
  • Ma D, Wilhelm S, Maze M, Franks NP (2002) Neuroprotective and neurotoxic properties of the „inert" gas, xenon. Br J Anaesth 89: 739-746.
  • MacDonald JF, Milkovic Z, Pennefather PS (1987) Use- dependent block of excitatory amino acid currents in cultured neurones by ketamine. J Neurosci 58: 251-266.
  • Miles JM, Cattalini M, Sharbrough FW, Wold LE, Wharen RE, Gerich JE, Haymond M, (1991) Metabolic and neu­rologic effects of an intravenous medium-chain triglycer­ide emulsion. JPEN J Parenter Enteral Nutr 15: 37-41.
  • Musser JB, Fontana JL, Mongan PD (1999) The anesthetic and physiologic effects of an intravenous administration of a halothane lipid emulsion (5% vol/vol). Anesth Analg 88: 671-675.
  • Ordway RW, Singer JJ, Walsh JVJ (1991) Direct regulation of ion channels by fatty acids. Trends Neurosci 14: 96-100.
  • Peled S, Jolesz F, Tseng C, Nascimben L, Albert MS, Walsworth R (1996) Determinants of tissue delivery for 129Xe Magnetic resonance in humans. Magn Reson Med 36: 340-344.
  • Tabuchi S, Kume K, Aihara M, Ishii S, Mishina, Shimizu T (1997) Lipid mediators modulate NMDA receptor cur­rents in a Xenopus oocyte expression system. Neurosci Lett 237: 13-16.
  • Traul KA, Driedger A, Ingle DL, Nakhasi D (2000) Review of the toxicologic properties of medium-chain triglycer­ides. Food Chem Toxicol 38: 79-98.
  • Weigt HU, Georgieff M, Beyer C, Fohr KJ (2002a) Activation of neuronal NMDA receptor channels by lipid emulsion. Anesth Analg 94: 331-337.
  • Weigt HU, Georgieff M, Georgieff EM, Fohr KJ (2002b) Impact of Lipofundin MCT 20% on NMDA-induced cur­rents from cortical neurons. Anesthesiology 96: A728.
  • Weigt HU, Georgieff M, Beyer C, Wachter U, Fohr KJ (2003) Xenon incorporated in a lipid emulsion inhibits NMDA receptor channels. Acta Anaesthesiol Scand 47: 1119-1124.
  • Yamakura T, Harris RA (2000) Effects of gaseous anesthet­ics nitrous oxide and xenon on ligand-gated ion channels. Anesthesiology 93: 1095-1101.
  • Yano T, Nakayama R, Ushijima K (2000) Intracerebroventricular propofol is neuroprotective against transient global ischemia in rats: extracellular glutamate level is not a major determinant. Brain Res 883: 69-76.
  • Zieminska E, Lazarewicz JW (2006) Excitotoxic neuronal injury in chronic homocysteine neurotoxicity studied in vitro: The role of NMDA and group I metabotropic gluta­mate receptors. Acta Neurobiol Exp (Wars) 66: 301­309.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-df2796b8-34a1-49a1-8be8-414b2c4a92c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.