Warianty tytułu
Bakterie celulolityczne mineralizujace lecytyne, rozpuszczajace fosforan trojwapniowy i redukujace siarczany w glebach lakowych nawadnianych biologicznie oczyszczonymi sciekami
Języki publikacji
Abstrakty
The effect of irrigation (fresh water, treated sewage, treated sewage stored in a biological pond) and mineral fertilization (NPK) of meadow soils on the counts of aerobic and anaerobic cellulolytic bacteria, lecithin-mineralizing bacteria, tribasic calcium phosphate-solubilizing bacteria, anaerobic sulfate-reducing bacteria was examined. The studies were performed in 1996 and 1997 in 8 different variants of irrigation and fertilization on 32 plots in the vicinity of the treatment plant in Olsztynek. Aerobic and anaerobic cellulose-degrading bacteria generally occurred in greater numbers in the soil from the plots irrigated with fresh water and/or with treated sewage stored in biological pond (particularly for the maximum dose). They were sporadically recorded in NPK fertilized soil. Lecithin-mineralizing bacteria occurred in great numbers both in non-irrigated, non-fertilized soil and in soil irrigated with fresh water and/or treated sewage. Tribasic calcium phosphate-solubilizing bacteria were sometimes recorded in greater numbers in NPK fertilized soil. Sulfate-reducing bacteria usually occurred in small numbers in the soils irrespectively of the irrigation or fertilization variant. The bacteria groups under study were reported in greater numbers in the 0-10 cm soil layer with the exception of anaerobic cellulose-degrading bacteria which were more numerous in the 15–25 cm and the 30–50 cm soil layers.
Zbadano wpływ nawadniania (wodą, oczyszczonymi ściekami, oczyszczonymi ściekami retencjonowanymi w stawie biologicznym) i nawożenia mineralnego NPK gleb łąkowych na liczebność bakterii rozkładających błonnik w warunkach tlenowych i beztlenowych, bakterii mineralizujących lecytynę i rozpuszczających fosforan trójwapniowy oraz beztlenowych bakterii redukujących siarczany. Badania przeprowadzono w latach 1996–1997 w 8 wariantach nawodnieniowo-nawożeniowych na 32 poletkach przy oczyszczalni ścieków w Olsztynku. Bakterie rozkładające błonnik w warunkach tlenowych i beztlenowych występowały z reguły liczniej w glebach nawadnianych wodą i/lub ściekami oczyszczonymi i następnie retencjonowanymi w stawie biologicznym, a niekiedy również w glebach nawożonych mineralnie NPK. Bakterie mineralizujące lecytynę występowały równie licznie zarówno w glebach nienawadnianych i nienawożonych, jak i w nawadnianych wodą i/lub oczyszczonymi ściekami. Liczba bakterii redukujących siarczany była natomiast znacznie niższa w glebach wszystkich wariantów nawodnieniowo-nawożeniowych. Badane grupy bakterii występowały na ogół liczniej w warstwie gleby 0–10 cm. Wyjątkiem były bakterie rozkładające błonnik w warunkach beztlenowych, które dominowały w głębszych warstwach (15–20 cm i 30–50 cm).
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
692-708
Opis fizyczny
p.692-708,fig.,ref.
Twórcy
autor
- University of Warmia and Mazury in Olsztyn, Romana Prawochenskiego 1, 10-720 Olsztyn, Poland
autor
Bibliografia
- ACEA M.J., CARBALLAS T. 1988. Effect of cattle slurry treatment on the microorganisms of carbon- and sulphur cycles in the soil. Biological Waste, 24: 251–258.
- ACEA M.J., CARBALLAS T. 1996. Changes in physiological groups of microorganisms in soil following wildfire. FEMS Microbiology Ecology, 20: 33–39.
- BARLAZ M.A., HANA R.K., SCHAEFER D.M. 1992. Microbial, chemical and methane production characteristics of microbically decomposed refuse with and without leachate recycling. Waste Manage. Res., 10: 257–267.
- BOJINOVA D.R., VELKOVA R., GRANCHAROV I., SHELEV S. 1997. The Bioconversion of Tunisian phosphorite using Aspergillus niger. Nutr. Cyc. Agroecosyst., 47: 227–232.
- CASTRO H.F., WILLIAMS N.H., OGRAM A. 2001. Phylogeny of sulphate-reducing bacteria. FEMS Microbiology Ecology, 31: 1–9.
- CHEN J., WEIMER P.J. 2001. Competition among three predominant ruminal cellulolytic bacteria in the absence or presence of non-cellulolytic bacteria. Microbiology, 147: 21–32.
- CHUNG H., PARK M., MADHAIYAN M., SESHADRI S., SONG J., CHO H., SA T. 2005. Isolation and characterization of phosphate-solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biology and Biochemistry, 37: 1970–1974.
- CYPIONKA H., WIDDEL F., PFENNIG N. 1985. Survival of sulfate-reducing bacteria after oxygen stress, and growth in sulfate-free oxygen-sulfide gradients. FEMS Microbiology Ecology, 31: 39–47.
- DOMEY S. 1992. Vorkommen Phosphat mobilisierender Bakterien in der Rhizosphare landwirtschaftlicher Kulturpflanzen bei mittleren bis hoher Phosphor-Versorgung des Bodens. Zentralbl. Mikrobiol., 147: 270–276.
- ERICKSSON K.E.L., BLANCHETTE R.A., ANDER P. 1992. Microbial and enzymatic degradation of wood components. Ch.2.6: Cellulose degradation by bacteria, pp.137–158 Berlin, Springer.
- FÖRSTER L., FREIER K. 1988. Beitrage zur Phosphormobilisierung durch Boden-Mikroorganismen in verschiedenen Boden der DDR. Wiss. Zeitschr. Univ. Halle, 37: 56–63.
- FREIER K. 1987. Untersuchungen zum Vorkommen P-mobilisierender Mikroorganismen in Böden der DDR und Prüfung ihrer Leistungs- Fähigkeit in vitro sowie in der Rhizosphäre von Sonnenblume und Winterweizen. Martin-Luther-Universitat, Landw. Fakulta¨ t. Diss. A. Halle,.
- FUKUJI M., TAKII S. 1990. Survival of sulphate-reducing bacteria in oxic surface sediment of a seawater lake. FEMS Microbiology Ecology, 23: 317–322.
- GOENADI D.H., SUGIARTO Y. 2000. Bioactivation of poorly soluble phosphate rocks with a phosphorus-solubilizing fungus. Soil Sci. Soc. Am. J., 64: 927–932.
- GOTTSCHALK G., ANDERSSEN J.R., HIPPE H. 1981. The Prokaryotes. II. Eds. M.P. Starr, H. Stolp, H.G. Trüper, A. Balows, G.H. Schlegel, Springer, Berlin, pp. 1767–1803.
- HARDY J.A., HAMILTON W.A. 1985. The oxygen tolerance of sulfate-reducing bacteria isolated from North Sea waters. Curr. Microbiol., 6: 259–262.
- HAYANO K. 1986. Cellulose complex in tomato field soil: induction, localization and some properties. Soil Biol. Biochem., 18: 215–219.
- HOPE C.F.A., BURNS R.G. 1987. Activity, origins and location of cellulose in a silt loam soil. Biol. Fertil. Soils, 5: 164–170.
- ILLMER P., BARBATO A., SCHINNER F. 1995. Solubilization of hardly soluble AlPO4 with P-solubilizing microorganisms. Soil Biol. Biochem., 27: 265–270.
- ILLMER P., SCHINNER P. 1995. Solubilization of inorganic calcium phosphates-solubilization mechanisms. Soil Biol. Biochem., 27: 257–263.
- IGUAL J.M., VALVERDE A., CERVANTES E., VELAZQUEZ E. 2001. Phosphate-solubilizing bacteria as inoculants for agriculture: use of update molecular techniques in their study. Agronomie, 21: 561–568.
- JOLIFF G., EDELMAN A., KLIER A., RAPOPORT G. 1989. Inducible secretion of a cellulose from Clostridium thermocellum in Bacillus subtilis. Appl. Env. Microbiol., 55: 2759–2744.
- JOHANSEN J.E., BINNERUP S.J. 2002. Contribution of Cytophaga-like bacteria to the potential of turnover of carbon, nitrogen and phosphorus by bacteria in the rhizosphere of barley (Hordeum vulgaris L.). Microbiol. Ecol., 45: 268–306.
- JONES D., SMITH B.F.J., WILSON M.J., GOODMAN B.A. 1991. Phosphate-solubilizing fungi in a Scottish upland soil. Mycol Res., 95: 1090–1093.
- KISS S., DRAGAN-BULARDA, M. RADULESCU D. 1978. Soil polysaccharides: activity and agricultural importance. [In:] Soil Enzyme. Ed. R.G. Burns, Academic Press, New York, pp. 117–147.
- KRISTIANSEN R. 1982a. The soil as a renovating medium-clogging of infiltrative surfaces. [In:] Alternative Waste Water Treatment. Eds. A.S. Eikum, R.W. Seabloom. D. Reidel Publ. Co., pp. 105–120.
- KRISTIANSEN R. 1982b. The soil as a renovating medium. The fate of pollutants in soil-organic matter. [In:] Alternative Waste Water Treatment. Eds. A.S. Eikum, R.W. Seabloom, D. Reidel Publ. Co., pp. 121–128.
- KASHATTRIYA S., SHARMA G.D., MISHRA R.R. 1992. Enzyme activities related to litter decomposition in the forest of different age and altitude in North East India. Soil Biol.Biochem, 24: 265–270.
- KUCHARSKI J., HŁASKO A., WYSZKOWSKA J. 2001. The number of microorganisms in soil contaminated with copper. Zesz. Probl. Post. Nauk Rol., 476: 165–172.
- LI X. 1997. Streptomyces cellulolyticus sp. nov., a new cellulolytic Streptomyces isolated of different origin. Can. J. Microbiol., 45: 395–399.
- MIKANOVA O., NOVÁKOVÁ J. 2002. Evaluation of P-solubilizing activity in soil microorganisms and its sensitivity to soluble phosphate. Roslinna Vy´roba, 48: 397–400.
- MORVAN B., LESME F.R., FONTY G., GOUET P. 1996. In vitro interaction between rumen H₂-producing cellulolytic microorganisms and H₂-utilizing acetogenic and sulfate-reducing bacteria. Anaerobe, 2: 175–180.
- NIEWOLAK S., Koc J. 1995. Microbiological studies on soils fertilized with pig slurry. Pol. J. Env. St., 4: 41–47.
- NIEWOLAK S., KORZENIEWSKA E., FILIPKOWSKA Z. 2005. Seasonal changes in the numbers of nitrogen cycle bacteria in the water, soil and plants wetlands near Olsztyn. Acta Univ. Nicolai Copernici, Limnological Paper, 25 (113): 105–122.
- NIEWOLAK S., TUCHOLSKI S. 2001. Microbiological examination of meadow soils irrigated with biologically treated sewages. Zesz. Probl. Post. Nauk Rol., 477: 431–442.
- NIEWOLAK S., TUCHOLSKI S., PIECHOTA M., PRZEZDZIAK M. 2001. Active microorganisms in nitrogen circulation in meadow soils irrigated with effluence from mechanical-biological waste treatment plant. Zesz. Probl. Post. Nauk Rol., 475: 33–48.
- PARRET A.H., SCHOOFS G., PROOST P., MOT R. DE. 2003. Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J. Bact., 185: 897–908.
- POURCHER A.M., SUTRA L., HEBO I., MOGUDET G., BOLLET C., SIMONEAU P., GARDAN L. 2001. Enumeration and characterization of cellulolytic bacteria from refuse of a landfill. FEMS Microbiology Ecology, 34: 229–241.
- QIAN X., BARLAZ M.A. 1996. Enumeration of anaerobic refuse decomposting microorganisms on refuse constituents. Waste Management Research, 14: 151–161.
- RAI B., SRIVASTAVA A.K. 1983. Decomposition and competitive colonization of leaf litter by fungi. Soil Biol.Biochem., 15: 115–117.
- RODINA A.G. 1968. Microbiological method of waters examinations. PWRiL, Warszawa, pp. 468.
- RODRIGUEZ H., FRAGA R. 1999. Phosphate solubilizing bacteria and role in plant growth promotion. Biotechnol. Adv., 17: 319–339.
- SASS A.M., ESCHERMANN A., KÜHL M., THAR R., SASS H., CYPIONKA H. 2002. Growth and chemosensory behavior of sulfate-reducing bacteria in oxygen-sulfide gradients. FEMS Microbiology Ecology, 40: 47–54.
- SCHRÖDER D., URBAN B. 1985. Bodenatmung, Celluloseabbau und Dehydrogenaseaktivität in verschiedenen Böden und ihre Beziehungen zur organischen Substanz sowie Bodeneigenschaften. Landwirtsch. Forschung, 58: 166–172.
- SCHWARTZ W. 2004. A list of cellulolytic bacteria. Cellulolytische Mikroorganismen. TUM Microbial Biotechnology, pp. 1–8.
- SINSABAUGH R.L., LINKINS A.E. 1988. Adsorption of cellulose components by leaf litter. Soil Biol. Biochem., 20: 927–931.
- STANISZ A. 1998. Course on statistics based on STATISTICA PL on examples from medicine, Stat Soft Poland Sp. z o.o., Kraków, 263–292.
- TATENO M. 1988. Limitation and available substrates for the expression of cellulose and protease activities in soil. Soil Biol. Biochem., 20: 117–118.
- TUCHOLSKI S., NIEWOLAK S., MARKIEWICZ K., KOC J. 1998. Investigations on possibility of utilizing biologically treated sewages in fishery and agricultural production. Report on research, Project KBN 5P0 6H00109. Mimeographed.
- ULRICH A., WIRTH S. 1999. Phylogenetic diversity and population densities of culturable cellulolytic soil bacteria across an agricultural encatchment. Microb. Ecol., 37: 238–247.
- WEIMER P.J., ODT C., VAGHORN G.C., MERTENS D.R. 1997. Populations of individual species of cellulolytic bacteria in the rumen of lactating cows fed different diets. US Dairy Forage Research Center, Research Summaries, USDA ARS, 57–59.
- WIRTH S., ULRICH A. 2002. Cellulose degrading potential and phylogeneric classification of carboxymethyl-cellulose decomposing bacteria isolated from soil. System. Appl. Microbiol., 25: 584–591.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-db560b68-a145-4a1e-b021-6629ad780217