Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1999 | 46 | 2 |
Tytuł artykułu

Nonsymbiotic haemoglobins in plants

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
General aspects regarding the presence of nonsymbiotic haemoglobin in plants are presented with the emphasis on those related to its function. As it becomes apparent that the nonsymbiotic haemoglobins are widespread across the plant kingdom and that they represent a more primitive and evolutionary older form of the plant globin genes, the question of their function becomes more attractive. While the physiological functions of the symbiotic haemoglobins in plants are well understood, almost nothing is known about their nonsymbiotic predecessors. Therefore, the known and hypothetical functions of haemoglobins in various systems are described along with information concerning properties and the regulation of expression of the nonsymbiotic haemoglobins. Interestingly, a number of nonsymbiotic haemoglobins have been shown to be hypoxia-inducible. The spatial and temporal pattern of this induction in barley may suggest that it is an integral part of the plants response to limiting oxygen stress.
Wydawca
-
Rocznik
Tom
46
Numer
2
Opis fizyczny
p.431-445,fig.
Twórcy
autor
  • Plant Breeding and Acclimatization Institute, Radzikow, 05-870 Blonie, Poland
autor
autor
autor
Bibliografia
  • Andersson, C.R., Jensen, E.O., Llewellyn, D.J., Dennis, E.S. & Peacock, W.J. (1996) A new he­moglobin gene from soybean: A role for hemo­globin in all plants. Proc. Natl Acad. Sci. U.S.A. 93, 5682-5687.
  • Andersson, C.R., Llewellyn, D.J., Peacock, W.J. & Dennis, E.S. (1997) Cell-specific expression of the promoters of two nonlegume hemoglobin genes in a transgenic legume, Lotus cornicula- tus. Plant Physiol 113. 45-57.
  • Andrews, C.J. & Pomeroy, M.K. (1989) Metabolic acclimation to hypoxia in winter cereals. Low temperature flooding increases adenylates and survival in ice encasement. Plant Physiol 91. 1063-1068.
  • Appleby, C.A. (1984) Leghemoglobin and Rhizo- bium respiration. Annu. Rev. Plant Physiol 35, 443-478.
  • Appleby, C.A. (1992) The origin and functions of haemoglobin in plants. Sci. Progress 76, 365-398.
  • Appleby, C.A., Tjepkema, J.D. & Trinick, M.J. (1983) Hemoglobin in a nonleguminous plant, Parasponia: possible genetic origin and func­tion in nitrogen fixation. Science 220, 951- 953.
  • Arredondo-Peter. R., Hargrove, M.S.. Sarath, G., Moran, J.F., Lohrman, J., Olson, J.S. & Klu- cas, R.V. (1997) Rice hemoglobins: Gene clon­ing, analysis and oxygen binding kinetics of a recombinant hemoglobin synthesized in Esch­erichia coli. Plant Physiol 115, 1259-1266.
  • Bogusz, D., Appleby, C.A., Landsmann, J., Den­nis, E.S., Trinick, M.J. & Peacock, W.J. (1988) Functioning haemoglobin genes in non- nodulating plants. Nature 331, 178-180.
  • Chen, W., Hughes, D.E. & Bailey, J.E. (1994) In­tracellular expression of Vitreoscilla hemoglo­bin alters the aerobic metabolism of Saccharo- my ces cerevisiae. Biotechnol. Prog. 10, 308-313.
  • Christensen, T., Dennis, E.S., Peacock, J.W., Landmann, J. & Marcker, K.A. (1991) Hemo­globin genes in non-legumes: Cloning and characterization of a Casuarina glauca hemo­globin gene. Plant Mol Biol 16, 339-344.
  • Couture, M., Chamberland, H., St Pierre, B., La- Fontaine, J. & Guertin, M. (1994) Nuclear gene encoding chloroplast hemoglobins in the unicellular green alga Chlamydomonas euga- metos. Mol Gen. Genet. 243, 185-197.
  • Dikshit, R.P., Dikshit, K.L., Liu, Y. & Webster, D.A. (1992) The bacterial hemoglobin from Vitreoscilla can support growth of Escherichia coli lacking terminal oxidases. Arch. Biochem, Biophys. 293, 241-245.
  • Dikshit, K.L. & Webster, D.A. (1988) Cloning, characterization and expression of the bacte­rial globin gene from VitreosciUa in Escheri­chia coli. Gene 70, 337-386.
  • Dixon, B., Walker, B., Kimmins, W. & Pohajdak, B. (1992) A nematode hemoglobin gene con­tains an intron previously thought to be unique to plants. J. Mol Evol 35, 131-136.
  • Duff, S.M.G., Wittenberg, J.B. & Hill, R.D. (1997) Expression purification, and properties of re­combinant barley hemoglobin: Optical spectra and reactions with gaseous ligands. J. Biol Chem. 272, 16746-16752.
  • Gibson, Q.H. & Smith, M.H. (1965) Rates of reac­tion of Ascaris haemoglobins with ligands. Proc. R. Soc. Lond. B. Biol Sci. 163, 206- 214.
  • Gibson, Q.H., Wittenberg, J.B., Wittenberg, B.A., Bogusz, D. & Appleby, C.A. (1989) The kinet- ics of ligand binding to plant hemoglobins. J. Biol Chem. 264, 100-107.
  • Gilles Gonzalez, M.A., Gonzalez, G., Perutz, M.F., Kiger, L., Marden, M.C. & Poyart, C. (1994) Heme-based sensors, exemplified by the ki­nase FixL, are a new class of heme protein with distinctive ligand binding and autoxida- tion. Biochemistn 33, 8067-8073.
  • Goldberg, D.E. (1995) The enigmatic oxygen-avid hemoglobin of Ascaris. BioEssays 17, 177- 182.
  • Goldberg, M.A., Dunning, S.P. & Bunn, H.F. (1988) Regulation of the erythropoietin gene: evidence that the oxygen sensor is a heme pro­tein. Science 242, 1412-1415.
  • Guy, P.A., Sowa, A.W. & Hill, R.D. (1997) Ge­nomic nucleotide sequence of the barley he­moglobin gene (Accession No. U94968) (PGR97-093). Plant Physiol. 114,1135-1135.
  • Hardison, R.C. (1996) A brief history of hemo­globins: Plant, animal, protist, and bacteria. Proc. Natl. Acad. Sci. U.S.A. 93, 5675-5679.
  • Hill. R.D. (1998) What are hemoglobins doing in plants? Can. J. Bot 76. 707-712.
  • Holmberg, N.. Lilius, G., Bailey, J.E. & Bulow. L. (1997) Transgenic tobacco expressing Vit- reoscilla hemoglobin exhibits enhanced growth and altered metabolite production. Nature Biotechnol. 15, 244-247.
  • Hunt, S. & Layzell, D.B. (1993) Gas exchange of legume nodules and the regulation of nitroge- nase activity. Annu. Rev. Plant Physiol. Plant Mol Biol. 44, 483-511.
  • Jacobsen-Lyon, K., Jensen, E.O., Jorgensen, J.E., Marcker, K.A., Peacock. W.J. & Dennis, E.S. (1995) Symbiotic and nonsymbiotic hemoglo­bin genes of Casuarina glauca. Plant Cell 7, 213-223.
  • Johnson, J., Cobb. B.G. & Drew, M.C. (1989) Hy­poxic induction of anoxia tolerance in root tips of Zea mays. Plant Physiol 91,837-841.
  • Khosla, C. & Bailey, J.E. (1988) Heterologous ex­pression of a bacterial haemoglobin improves the growth properties of recombinant Escheri­chia coli. Nature 331, 633-635.
  • Kubo, H. (1939) Uber haemoprotein aus den wur- zellknoellchen von leguminosen. Acta Phyto- chim. 11, 195-200.
  • Landsmann, J., Dennis. E.S., Higgins, T.J.V., Ap­pleby, C.A., Kortt, A.A. & Peacock. W.J. (1986) Common evolutionary origin of legume and non-legume plant haemoglobins. Nature 324, 166-168.
  • Nie, X. & Hill, R.D. (1997) Mitochondrial respira­tion and hemoglobin gene expression in bar­ley alcurone tissue. Plant Physiol. 114, 835-840.
  • Poole, R.K., Dmello, R.. Hill, S., Ioannidis, N., Le­ung, D. & Wu, G.H. (1994a) The oxygen reac­tivity of bacterial respiratory haemoproteins: Oxidases and globins. Bioenergetics 1187, 226-231.
  • Poole, R.K., Ioannidis, N. & Orii, Y. (1994b) Reac­tions of the Escherichia coli flavohaemoglobin (Hmp) with oxygen and reduced nicotinamide adenine dinucleotide: Evidence for oxygen switching of flavin oxidoreduction and mecha­nism for oxygen sensing. iVoc. R. Soc. Lond. Biol Sci. 225, 251-258.
  • Riggs. A.F. (1991) Aspects of the origins and evo­lution of non-verterbrate hemoglobins. Am. Zoologist 31, 535-545.
  • Runnegar, B. (1984) Derivation of of the globins from type b cytochromes. -J. Mol Evol 21, 33-41.
  • Sasaki, T., Song, J., Kogaban, Y., Matsui, Y., Fang. F., Higo, H., Nagasaki, II., Ilori, M., Miya, M. & Murayama Kayano, E. (1994) To­ward cataloguing ail rice genes: Large-scale se­quencing of randomly chosen rice cDNAs from a callus cDNA library. Plant J. 6. 615- 624.
  • Sherman, D.R., Kloek, A.P., Krishnan, B.R., Guinn. B. & Goldberg. D.E. (1992) Ascaris he­moglobin gene: Plant-like structure reflects the ancestral globin gene. Proc. Natl Acad. Sci. U.S.A. 89. 11696-11700.
  • Sowa. A.W., Duff, S.M.G., Guy, P.A. & Hill. R.D. (1998) Altering hemoglobin levels changes en­ergy status of maize cells under hypoxia. Proc. Natl Acad. Set. U.S.A. 95, 10317-10321.
  • Szczyglowski, K., Szabados, L., Fujimoto, S.Y., Silver, D. & de Bruijn, F.J. (1994) Site-specific mutagenesis of the nodule-infected cell ex­pression (NICE) element and the AT-rich ele­ment ATRE-BS2* of the Sesbania rostrata le- ghemoglobin glb3 promoter. Plant Cell 6, 317-332.
  • Taylor, E.R., Nie, X.Z., MacGregor, A.W. & Hill, R.D. (1994) A cereal haemoglobin gene is ex­pressed in seed and root tissues under anaero­bic conditions. Plant Mol. Biol 24,853-862.
  • Trevaskie, B., Watts, R.A., Andersson, C.R., Llewellyn, D.J., Hargrove, M.S., Olson, J.S., Dennis, E.S. & Peacock, W.J. (1997) Two he­moglobin genes in Arabidopsis thaliana: The evolutionary origins of leghemoglobins. Proc. Natl. Acad. Sci. U.S.A. 94, 12230-12234.
  • Vanhstein, B.K., Harutgunyan, E.H., Kuronova, I.P., Barisov, V.V., Suffenov, N.I., Pavolsky, A.G., Grebenko, A.I. & Konareva, N. (1975) Structure of leghemoglobin from lupin root nodules of 5 A resolution. Nature 254, 163-164.
  • Wakabayashi, S., Matsubara, H. & Webster, D.A. (1986) Primary sequence of a dimeric bacte­rial haemoglobin from Vitreoscilla. Nature 322, 481-483.
  • Wittenberg, J.B. & Wittenberg, B.A. (1990) Me­chanisms of cytoplasmic hemoglobin and myoglobin function. Annu. Rev. Biophys. Bio- phys. Chem. 19, 217-241.
  • Xia, J.H. & Saglio, P.H. (1902) Lactic acid efflux as a mechanism of hypoxic acclimation of maize root tips to anoxia. Plant Physiol. 100, 40-46.
  • Xia, Z.X., Shamala, N., Bethge, P.H., Lim, L.W., Bellamy, H.D., Xuong, N.H., Lederer, F. & Mathews, F.S. (1987) Three dimentional structure of flavocytochrome b£ from baker's yeast at 3 A resolution. Proc. Natl. Acad. Sci. U.S.A 84, 2629-2633.
  • Zhu, H. & Riggs, A.F. (1992) Yeast flavohemoglo- bin is an ancient protein related to globins and a reductase family. Proc. Natl Acad. Sci. U.S.A. 89, 5015-5019.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-d97add59-4736-4d56-b15f-27de50ed5bd4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.