Warianty tytułu
Morphological and molecular markers of stem and progenitor cells in the mammary gland
Języki publikacji
Abstrakty
The mammary gland is a dynamic organ that undergoes profound remodeling dependent on proliferation, differentiation, and apoptosis of mammary epithelial cells (MEC) during the cycle of the pregnancy, lactation, and involution. Long-lived populations of stem cells, which have a unique capacity for self-renewal, are responsible for these developmental changes. There is an increasing body of discoveries regarding human and mouse mammary gland stem cells, but the studies on bovine mammary gland stem cells are still very limited. According to morphological criteria bovine MEC are classified into two types: undifferentiated type I stem/progenitor cells assembling small light cells (SLC) and large light cells (LLC), and type II partially differentiated large dark cells (LDC) and terminally differentiated cells. To date there are no identified reliable molecular markers of stem/progenitor cells in bovine mammary glands. The main candidates are membrane transporting proteins of the Adenosine Binding Cassette (ABC) family, including Multi-drug-resistance protein 1 (Mdr1) and Breast cancer resistance protein 1 (Bcrp1). These proteins allow for the isolation of side populations (SP) of MEC assembling stem/progenitor cells by exclusion of dyes. Cytometric analysis of SP revealed from 0.2% to 5% of MEC in human and mouse mammary glands. The knowledge on the number and molecular properties of stem cells in bovine mammary glands would be very useful not only for enhancing milk production but also for explanation of the natural resistance against mammary cancer in this species.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
136-141
Opis fizyczny
s.136-141,fot.,bibliogr.
Twórcy
autor
- Szkola Glowna Gospodarstwa Wiejskiego, ul.Nowoursynowska 166, 02-787 Warszawa
autor
autor
Bibliografia
- 1. Alvi A. J., Clayton H., Joshi C., Envert T., Ashworth A., Vivanco M. M., Dale T. C., Smalley M. J.: Functional and molecular characterization of mammary side population cells. Breast Cancer Res. 2003, 5, 1-8.
- 2. Chang C. C., Trosko J. E., El-Fouhy M. H., Gibson-D'Ambrosio R. E., D'Ambrosio S. M.: Contact insensitivity of a subpopulation of normal human fetal kidney epithelial cells and of human carcinoma cell lines. Cancer Res. 1987, 47, 1634-1645.
- 3. Chepko G., Dickson R. B.: Ultrastructure of the putative stem cell niche in the rat mammary epithelium. Tissue Cell 2003, 35, 83-93.
- 4. Clarke R. B., Anderson E., Howell A., Potten C. S.: Regulation of human breast epithelial stem cells. Cell Prolif. 2003, 36, 45-58.
- 5. Clayton H., Titley I., Vivanco M.: Growth and differerentiation of progenitor/stem cells derived from human mammary gland. Exp. Cell. Res. 2004, 297, 444-460.
- 6. DeOmé K. B., Faulkin L. J. Jr., Bern H. A., Blair P. B.: Development of mammry tumors from hyperplastic alveolar nodules transplanted into gland-free mammry fat pads of female C3H mice. Cancer Res. 1959, 19, 515-520.
- 7. Dontu G., Abdallah W. M., Foley J. M., Jackson K. W., Clarke M. F., Kawamura M. J., Wicha M. S.: In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes.&Dev. 2003, 17, 1253-1270.
- 8. Dowling-Warriner C. V., Trosko J. E.: Induction of gap junctional intercellular communication, connexin 43 expression, and subsequent differentiation in human fetal neuronal cells by stimulation of the cyclicAMPpathway. Neuroscience 2000, 95, 859-868.
- 9. Ellis S., Edwards F., Akers R. M.: Morphological and histological analysis of the prepubertal ovine mammary gland. J. Dairy Sci. 1995, 78 (Suppl 1), 157.
- 10. Ellis S., Purup S., Sejrsen K., Akers R. M.: In vitro analysis of pripheral and medial parenchymal zones in prepubertal ruminant mammary glands. J. Dairy Sci. 2000, 83 (Suppl 1), 952-961.
- 11. Evans M. J., Kaufman M. H.: Establishment in culture of pluripotential cells from mouse embryos. Nature 1981, 292, 154-156.
- 12. Ferguson D.: Ultrastructural characterization of the proliferative (stem?) cells within the parenchyma of the normal resting breast. Cell Tissue Res. 1985, 252 (Suppl 1), 581-587.
- 13. Fiszer D., Rozwadowska N., Kurpisz M.: Stem cells from the perspective of clinical applications. Medycyna Wet. 2003, 59, 751-754.
- 14. Ford C. E., Hamerton J. L., Barnes D. W. H., Loutit J. F.: Cytological identification of radiation-chimaeras. Nature 1956, 177, 452-454.
- 15. Gengozian N., Urso I. S., Congdon C. C., Conger A. D., Makinodan T.: Thymus specificity in lethally irradiated mice treated with rat bone marrow. Proc. Soc. Exp. Biol. Med. 1957, 96, 714-720.
- 16. Goodell M. A., Brose K., Paradis G., Conner A. S., Mulligan R. C.: Isolation and functional properties of murine hematopoietic stem cells that replicating in vivo. J. Exp. Med. 1996, 183, 1797-1806.
- 17. Holland M. S., Tai M.-H., Trosko J. E., Griffin L. D., Stasko J. A., Cheville N. C., Holland R. E.: Isolation and differentiation of bovine mammary gland progenitor cell populations. Am. J. Vet. Res. 2003, 64, 396-403.
- 18. Kao C.-Y., Nomata K., Oakley C. S., Welch C. W., Chang C. C.: Two types of normal human breast epithelial cells derived from reduction mammoplasty: Phenotypic characterization and response to SV40 transfection. Carcinogenesis 1995, 16, 531-538.
- 19. Kao C.-Y., Oakley C. S., Welsch C. W., Chang C. C.: Growth requirements and neoplastic transformation of two types of normal breast epithelial cells derived from reduction mammoplasty. In Vitro Cell. Dev. Biol. 1997, 3, 282-288.
- 20. Kordon E. C., Smith G. H.: An entire functional mammary gland may comprise the progeny from a single cell. Development 1998, 125, 1921-1930.
- 21. Lee S. W., Tomasetto C., Paul D., Keyomarsi K., Sager R.: Transcriptional down-regulation of gap junction proteins blocks junctional communication in human mammary tumor cell lines. J. Cell. Biol. 1992, 118, 1213-1221.
- 22. Li P., Wilde C. J., Finch L. M., Ferning D. G., Rudland P. S.: Identification of cell types in the developing goat mammary gland. Histochem. J. 1999, 31 (Suppl 1), 379-393.
- 23. Martin G. R.: Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc. Natl. Acad. Sci. USA 1981, 78, 7634-7638.
- 24. Matic M., Evans W. H., Brink P. R., Simon M.: Epidermal cells do not communicate through gap junctions. J. Invest. Dermatol. 2002, 118, 110-116.
- 25. Matic M., Petrov I. N., Chen S., Wang C., Dimitrijevch W. M., Wolosin J. M.: Stem cells of the corneal epithelium lack connexins and metabolite transfer capacity. Differentiation 1997, 61, 251-260.
- 26. Nowell P. C., Cole L. J., Habermyer J. G., Roan P. L.: Growth and continued function of rat marrow cells in x-irradiated mice. Cancer Res. 1956, 16, 258-261.
- 27. Smith G. H., Medina D.: A morphologically distinct candidiate for an epithelial stem cell in mouse mammary gland. J. Cell. Sci. 1988, 90, 173-183.
- 28. Tai M. H., Olson L. K., Madhukar B. V., Linning K. D., Van Camp L., Tsao M. S., Trosko J. E.: Characterization of gap junctional intercellular communication in immortalized human pancreatic ductal epithelial cells with stem cell characteristics. Pancreas 2003, 26, 18-26.
- 29. Terskikh A. V., Easterday M. C., Li L., Hood L., Kornblum H. I., Geschwind D. H., Weissman I. L.: From hematopoiesis to neuropoiesis: Evidence of overlapping genetic programs. Proc. Natl. Acad. Sci. USA 2001, 98, 7934-7939.
- 30. Thomson J. A., Itskovitz-Eldor J., Shapiro S. S.: Embryonic stem cell lines derived from human blastocysts. Science 1998, 282, 1145-1147.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-cc8dd202-a7e8-47fb-aa86-184ae2bc22b3