Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 19 | 4 |
Tytuł artykułu

The small heat shock proteins in plants are members of an ancient family of heat induced proteins

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In response to high temperature stress, plants express numerous small heat shock proteins (sHSPs) belonging to at least five related gene families. in vitro studies suggest sHSPs act as molecular chaperones to prevent irreversible heat denaturation of other proteins. The diversity of sHSPs in plants is unique among eukaryotes and makes it of interest to understand the origins of these proteins. sHSP-related proteins have now been identified in 13 prokaryotes, and in many of these prokaryotes the sHSPs are heat-regulated as seen higher plants. The prokaryotic sHSPs were analyzed by pairwise and mutliple sequence alignments with each other and with plant sHSPs. The higher plant class I cytosolic sHSPs are shown to be most similar to a subset of the prokaryotic sHSPs, including HSP 16.6 from the cyanobacterium Synechocystis. Genetic studies in this model cyanobacterium may provide insight into sHSP function in vivo, and into potential roles of sHSPs in higher plant cells.
Wydawca
-
Rocznik
Tom
19
Numer
4
Opis fizyczny
p.539-547
Twórcy
autor
  • University of Arizona, Tucson, AZ 85721, USA
Bibliografia
  • Abu Kwaik, Y. and Engleberg, N.C. 1994. Cloning and molecular characterization of a Legionella pneumophila gene induced by intracellular infection and by various in vitro stress conditions. Mol. Microbiol. 13, 243–251.
  • Allen, S.P., Polazzi, J.O., Gierse, J.K., and Easton, A.M. 1992. Two novel heat shock genes encoding proteins produced in response to heterologous proteins expression in Escherichia coli. J. Biol. Chem. 174, 6938–6947.
  • Arrigo, A.-P. and Landry, J. 1994. Expression and function of the low-molecular weight heat shock proteins. In The biology of heat shock proteins and molecular chaperones. R. Morimoto, A. Tissieres, and C. Georgopolous, eds. (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press), pp. 335–373.
  • Bond, U. and Schlesinger, M.J. 1987. Heat shock proteins and development. Adv. Genet. 24, 1–28.
  • Booth, R.J., Williams, D.L., Moudgil, K.D., Noonan, L.C., Grandison, P.M., McKee, J.J., Prestidge, R.L., and Watson, J.D. 1993. Homologs of Mycobacterium leprae 18-kilodalton and Mycobacterium tuberculosis 19-kilodalton antigens in other mycobacteria. Infect. Immun. 61, 1509–1515.
  • Boston, R.S., Viitanen, P.V., and Vierling, E. 1996. Molecular chaperones and protein folding in plants. Plant Mol. Biol. 32, 191–222.
  • Bryant, D.A. 1994. The molecular biology of cyanobacteria.
  • Bult, C.J., White, O., Olsen, G.J., Zhou, L.X., Fleischmann, R.D., Sutton, G.G., Blake, J.A., FitzGerald, L.M., Clayton, R.A., Gocayne, J.D., Kerlavage, A.R., Dougherty, B.A., Tomb, J.F., Adams, M.D., Reich, C.I., Overbeek, R., Kirkness, E.F., Weinstock, K.G., Merrick, J.M., Glodek, A., Scott, J.L., Geoghagen, N.S.M., Weidman, J.F., and Fuhrmann, J.L. 1996. Complete genome sequence of the methanogenic archaeon, Methanococcus jannaschii. Science 273, 1058–1073.
  • Caspers, G.-J., Leunissen, J.A.M., and De Jong, W.W. 1995. The expanding small heat-shock protein family, and structure predictions of the conserved “-crystallin domain”. J. Mol. Evol. 40, 238–248.
  • Chang, A., Primm, T.P., Jakana, J., Lee, I.H., Serysheva, I., Chiu, W., Gilbert, H.F. and Quiocho, F.A. 1996. Mycobacterium tuberculosis 16-kDa antigen (Hsp16.3) functions as an oligomeric structure in vitro to suppress thermal aggregation. J. Biol. Chem. 271:7218–7223.
  • Chen, Q. and Vierling, E. 1991. Analysis of conserved domains identifies a unique structural feature of a chloroplast heat shock protein. Mol. Gen. Genet. 226, 425–431.
  • Coca, M.A., Almoguera, C., and Jordano, J. 1994. Expression of sunflower low-molecular-weight heat-shock proteins during embryogenesis and persistence after germination: Localization and possible functional implications. Plant Mol. Biol. 25, 479–492.
  • deJong, W.W., Leunissen, J.A., and Vooter, C.E. 1993. Evolution of the -crystallin/small heat-shock protein family. Mol. Biol. Evol. 10, 103–126.
  • DeRocher, A.E. and Vierling, E. 1994. Developmental control of small heat shock protein expression during pea seed maturation. Plant J. 5, 93–102.
  • Frydman, J. and Höhfeld, J. 1997. Chaperones get in touch: The hip-hop connection. Trends Biochem. Sci. 22, 87–92.
  • Gething, M.-J. 1997. Guidebook to molecular chaperones and protein folding catalysts. Oxford University Press, in press.
  • Gupta, R.S., Golding, G.B., and Singh, B. 1994. HSP70 phylogeny and the relationship between archaebacteria, eubacteria, and eukaryotes. J. Mol. Evol. 39, 537–540.
  • Heidelbach, M., Skladny, H., and Schairer, H.U. 1993. Heat shock and development induce synthesis of a low-molecular-weight stress-responsive protein in the Myxobacterium Stigmatella aurantiaca. J. Bacteriol. 175, 7479–7482.
  • Hendrick, J.P. and Hartl, F.-U. 1993. Molecular chaperone functions of heat-shock proteins. Annu. Rev. Biochem. 62, 349–384.
  • Henriques, A.O., Beall, B.W., and Moran, C.P., Jr. 1997. CotM of Bacillus subtilis, a member of the -crystallin family of stress proteins, is induced during development and participates in spore outer coat formation. J. Bacteriol. 179, 1887–1897.
  • Horwitz, J. 1992. -Crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89, 10449–10453.
  • Jakob, U., Gaestel, M., Engel, K., and Buchner, J. 1993. Small heat shock proteins are molecular chaperones. J. Biol. Chem. 268, 1517–1520.
  • Jobin, M.P., Delmas, F., Garmyn, D., Divičs, C., and Guzzo, J. 1997. Molecular characterization of the gene encoding an 18-kilodalton small heat shock protein associated with the membrane of Leuconostoc oenos. Appl. Environ. Microbiol. 63, 609–614.
  • Kurtz, S., Rossi, J., Petko, L., and Lindquist, S. 1986. An acient development induction: heat-shock proteins induced in sporulation and oogenesis. Science 231, 1154–1157.
  • Lee, G.J., Pokala, N., and Vierling, E. 1995. Structure and in vitro molecular chaperone activity of cy-10438.
  • Lee, G.J., Roseman, A.M., Saibil, H.R., and Vierling, E. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding—competent state. EMBO J. 16, 659–671.
  • Martin, J. and Hartl, F.U. 1997. Chaperone—assisted protein folding. Curr. Opin. Struct. Biol. 7, 41–52.
  • Morimoto, R.I., Tissieres, A., and Georgopoulos, C. 1990. Stress proteins in biology and medicine (Cold Spring Harbor, N.Y. Cold Spring Harbor Laboratory Press).
  • Narberhaus, F., Weiglhofer, W., Fischer, H., and Hennecke, H. 1996. The Bradyrhizobium japonicum rpoH 1 gene encoding a σ32-like protein is part of a unique heat shock gene cluster together with groESL 1 and three small heat shock genes. J. Bacteriol. 178, 5337–5346.
  • Nerland, A.H., Mustafa, A.S., Sweetser, D., Godal, T., and and Young, R.A. 1988. A protein antigen of Mycobacterium leprae is related to a family of small heat shock proteins. J. Bacteriol. 170, 5919–5921.
  • Parsell, D.A. and Lindquist, S. 1993. The function of heat-shock proteins in stress tolerance: degradation and reactivation of proteins. Annu. Rev. Genet. 27, 437–496.
  • Plesofsky-Vig, N., Vig, J., and Brambl, R. 1992. Phylogeny of the -crystallin-related heat-shock proteins. J. Mol. Evol. 35, 537–545.
  • Raman, B. and Rao, C.M. 1994. Chaperone-like activity and quaternary structure of -crystallin. J. Biol. Chem. 269, 27264–27268.
  • Sauer U., Dürre P. 1993. Sequence and molecular characterization of a DNA region encoding a small heat shock protein of Clostridium acetobutylicum. J. Bact. 175:3394–3400.
  • Servant, P. and Mazodier, P. 1995. Characterization of Streptomyces albus 18-kilodalton heat shock-responsive protein. J. Bact. 177, 2998–3003.
  • Tranbarger, T.J. and Misra, S. 1995. The molecular characterization of a set of cDNAs differentially expressed during Douglas-fir germination and early seedling development. Physiol. Plant. 95, 456–464.
  • Vermaas, W. 1996. Molecular genetics of the cyanobacterium Synechocystis sp. PCC 6803: Principles and possible biotechnology applications. J. Appl. Phycol. 8, 263–273.
  • Vierling, E., Nagao, R.T., DeRocher, A.E., and Harris, L.M. 1988. A heat shock protein localized to chloroplasts is a member of a eukaryotic superfamily of heat shock proteins. EMBO J. 7, 575–581.
  • Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620.
  • Waters, E. 1995. The molecular evolution of the small heat shock proteins in plants. Genetics 141, 785–795.
  • Waters, E.R., Lee, G.J., and Vierling, E. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47, 325–338.
  • Wehmeyer, N., Hernandez, L.D., Finkelstein, R.R., and Vierling, E. 1996. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation. Plant Physiol. 112, 747–757.
  • Yeh, C.H., Yeh, K.W., Wu, S.H., Chang, P.F.L., Chen, Y.M., and Lin, C.Y. 1995. A recombinant rice 16.9-kDa heat shock protein can provide thermoprotection in vitro. Plant Cell Physiol. 36, 1341–1348.
  • Yuan, Y., Crane, D.D., and Barry, C.E. III 1996. Stationary phase-associated protein expression in Mycobacterium tuberculosis: Function of the mycobacterial — crystallin homolog. J. Bact. 178, 4484–4492.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-cbdf5924-7a29-45f0-a937-2b4fae3d3159
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.