Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 61 | 4 | 501-506
Tytuł artykułu

GABAergic and glutamatergic currents in hippocampal slices and neuronal cultures show profound differences: a clue to a potent homeostatic modulation

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Acute hippocampal slices and primary neuronal cultures are often used with a tacit assumption that basic characteristics of the two models closely resemble each other. The use of the cell cultures, however, may raise controversies because of non-physiological conditions resulting from e.g. glial cells deficit, random neuronal sprouting, lack of specificity in the synaptic connections, impaired homeostasis, etc. Importantly, alteration in neuronal environment, especially when occurring over a prolonged period of time, may give rise to a profound homeostatic modulation. In the present study we have compared the properties of GABAergic and glutamatergic (non-NMDA) currents in pyramidal neurons from hippocampal slices and neuronal cell culture. We show that, most strikingly, amplitude ratio of currents elicited by ultrafast applications of saturating GABA and glutamate was nearly one order of magnitude larger in cultured neurons than that in slices. Miniature IPSCs and EPSCs also showed substantial differences between these two models. In particular, mEPSC amplitudes were larger and more frequent in cultured neurons but their time duration was longer in slices. Miniature IPSCs did not show differences in amplitude when comparing slices and cultures but their time duration was faster and occurrence more frequent in slices. In conclusion, we provide evidence that expression pattern of GABAA and glutamate receptors as well as synaptic current properties in the neuronal cell culture show profound differences with respect to that in the physiological conditions.
Wydawca
-
Rocznik
Tom
61
Numer
4
Strony
501-506
Opis fizyczny
p.501-506,fig.,ref.
Twórcy
autor
  • Wroclaw Medical University, 3 Chalubinskiego Street, 50-367 Wroclaw, Poland
autor
Bibliografia
  • Swanwick CC, Murthy NR, Mtchedlishvili Z, Sieghart W, Kapur J. Development of gamma-aminobutyric acidergic synapses in cultured hippocampal neurons. J Comp Neurol 2006; 495: 497-510.
  • Pytel M, Wojtowicz T, Mercik K, et al. 17 beta-estradiol modulates GABAergic synaptic transmission and tonic currents during development in vitro. Neuropharmacology 2007; 52: 1342-1353.
  • Leskiewicz M, Jantas D, Budziszewska B, Lason W. Excitatory neurosteroids attenuate apoptotic and excitotoxic cell death in primary cortical neurons. J Physiol Pharmacol 2008; 59: 457-475.
  • Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 2004; 5: 97-107.
  • Turrigiano GG. The self-tuning neuron: synaptic scaling of excitatory synapses. Cell 2008; 135: 422-435.
  • Mozrzymas JW, Wojtowicz T, Piast M, Lebida K, Wyrembek P, Mercik K. GABA transient sets the susceptibility of mIPSCs to modulation by benzodiazepine receptor agonists in rat hippocampal neurons. J Physiol 2007; 585: 29-46.
  • Jonas P. Fast application of agonists to isolated membrane patches. In Single-Channel Recording, B. Sakmann, E. Neher (eds). New York-London, Plenum Press, 1995, pp. 231-243.
  • Hollrigel GS, Soltesz I. Slow kinetics of miniature IPSCs during early postnatal development in granule cells of the dentate gyrus. J Neurosci 1997; 17: 5119-5128.
  • Contractor A, Swanson G. Kainate receptors. In The Glutamate Receptors, R. Gereau, G. Swanson (eds.). Totowa, Humana Press, 2008, pp. 99-158.
  • Barbour B, Keller BU, Llano I, Marty A. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 1994; 12: 1331-1343.
  • Blasiak A, Blasiak T, Lewandowski MH. Electrophysiology and pharmacology of the optic input to the rat intergeniculate leaflet in vitro. J Physiol Pharmacol 2009; 60(1): 171-180.
  • Mody I. Aspects of the homeostaic plasticity of GABAA receptor-mediated inhibition. J Physiol 2005; 562: 37-46.
  • Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 1998; 391: 892-896.
  • O’Brien RJ, Kamboj S, Ehlers MD, Rosen KR, Fischbach GD, Huganir RL. Activity-dependent modulation of synaptic AMPA receptor accumulation. Neuron 1998; 21: 1067-1078.
  • Watt AJ, van Rossum MC, MacLeod KM, Nelson SB, Turrigiano GG. Activity coregulates quantal AMPA and NMDA currents at neocortical synapses. Neuron 2000; 26: 659-670.
  • Kilman V, van Rossum MC, Turrigiano GG. Activity deprivation reduces miniature IPSC amplitude by decreasing the number of postsynaptic GABA(A) receptors clustered at neocortical synapses. J Neurosci 2002; 22: 1328-1337.
  • Bausch SB, He S, Petrova Y, Wang XM, McNamara JO. Plasticity of both excitatory and inhibitory synapses is associated with seizures induced by removal of chronic blockade of activity in cultured hippocampus. J Neurophysiol 2006; 96: 2151-2167.
  • Echegoyen J, Neu A, Graber KD, Soltesz I. Homeostatic plasticity studied using in vivo hippocampal activity-blockade: synaptic scaling, intrinsic plasticity and age-dependence, PLoS One 2007; 2: e700.
  • Murthy VN, Schikorski T, Stevens CF, Zhu Y. Inactivity produces increases in neurotransmitter release and synapse size. Neuron 2001; 32: 673-682.
  • Thiagarajan TC, Piedras-Renteria ES, Tsien RW. Alpha- and betaCaMKII. Inverse regulation by neuronal activity and opposing effects on synaptic strength. Neuron 2002; 36: 1103-1114.
  • Pratt KG, Watt AJ, Griffith LC, Nelson SB, Turrigiano GG. Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII. Neuron 2003; 39: 269-281.
  • Harris BT, Costa E, Grayson DR. Exposure of neuronal cultures to K+ depolarization or to N-methyl-D-aspartate increases the transcription of genes encoding the alpha 1 and alpha 5 GABAA receptor subunits. Brain Res Mol Brain Res 1995; 28: 338-342.
  • Ives JH, Drewery DL, Thompson CL. Differential cell surface expression of GABAA receptor alpha1, alpha6, beta2 and beta3 subunits in cultured mouse cerebellar granule cells influence of cAMP-activated signaling. J Neurochem 2002; 80: 317-327.
  • Martikainen IK, Lauk K, Moykkynen T, Holopainen IE, Korpi ER, Uusi-Oukari M. Kainate down-regulates a subset of GABAA receptor subunits expressed in cultured mouse cerebellar granule cells. Cerebellum 2004; 3: 27-38.
  • Fiszman ML, Barberis A, Lu C, et al. NMDA receptors increase the size of GABAergic terminals and enhance GABA release. J Neurosci 2005; 25: 2024-2031.
  • Miranda JD, Barnes EM. Repression of gamma-aminobutyric acid type A receptor alpha1 polypeptide biosynthesis requires chronic agonist exposure. J Biol Chem 1997; 272: 16288-16294.
  • Madri JA. Modeling the neurovascular niche: implications for recovery from CNS injury. J Physiol Pharmacol 2009; 60(Suppl 4): 95-104.
  • Wierenga CJ, Ibata K, Turrigiano GG. Postsynaptic expression of homeostatic plasticity at neocortical synapses. J Neurosci 2005; 25: 2895-2905.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-c74e111a-4bce-45e0-b422-f39945b165de
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.