Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 48 | 4 |
Tytuł artykułu

3D domain swapping, protein oligomerization, and amyloid formation

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In 3D domain swapping, first described by Eisenberg, a structural element of a monomeric protein is replaced by the same element from another subunit. This pro­cess requires partial unfolding of the closed monomers that is then followed by adhe­sion and reconstruction of the original fold but from elements contributed by different subunits. If the interactions are reciprocal, a closed-ended dimer will be formed, but the same phenomenon has been suggested as a mechanism for the formation of open-ended polymers as well, such as those believed to exist in amyloid fibrils. There has been a rapid progress in the study of 3D domain swapping. Oligomers higher than dimers have been found, the monomer-dimer equilibrium could be controlled by mu­tations in the hinge element of the chain, a single protein has been shown to form more than one domain-swapped structure, and recently, the possibility of simulta­neous exchange of two structural domains by a single molecule has been demon­strated. This last discovery has an important bearing on the possibility that 3D do­main swapping might be indeed an amyloidogenic mechanism. Along the same lines is the discovery that a protein of proven amyloidogenic properties, human cystatin C, is capable of 3D domain swapping that leads to oligomerization. The structure of domain- swapped human cystatin C dimers explains why a naturally occurring mutant of this protein has a much higher propensity for aggregation, and also suggests how this same mechanism of 3D domain swapping could lead to an open-ended polymer that would be consistent with the cross-β structure, which is believed to be at the heart of the molecular architecture of amyloid fibrils.
Wydawca
-
Rocznik
Tom
48
Numer
4
Opis fizyczny
p.807-827,fig.
Twórcy
autor
  • A.Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland
Bibliografia
  • Abrahamson, M., Barrett, A.J., Salvesen, G. & Grubb, A. (1986) Isolation of six cysteine proteinase inhibitors from human urine. Their physicochemical and enzyme kinetic properties and concentrations in biological fluids. J. Biol. Chem. 261, 11281-11289.
  • Abrahamson, M. & Grubb, A. (1994) Increased body temperature accelerates aggregation of the Leu->Gln mutant cystatin C, the amyloid-forming protein in hereditary cystatin C amyloid angiopathy. Proc. Natl. Acad. Sci. U.S.A. 91, 1416-1420.
  • Adinolfi, S., Piccoli, R., Sica, F. & Mazzarella, L. (1996) BS-RNase tetramers: An example of domain-swapped oligomers. FEBSLett. 398, 326-332.
  • Alvarez-Fernandez, M., Barrett, A.J., Gerhartz, B., Dando, P.M., Ni, J. & Abrahamson, M. (1999) Inhibition of mammalian legumain by some cystatins is due to a novel second reactive site. J. Biol. Chem. 274, 19195-19203.
  • Barrett, A.J., Fritz, H., Grubb, A., Isemura, S., Jarvinen, M., Katunuma, N., Machleidt, W., Muller-Esterl, W., Sasaki, M. & Turk, V. (1986) Nomenclature and classification of the proteins homologous with the cysteine-proteinase inhibitor chicken cystatin. Biochem. J. 236, 312.
  • Beintema, J.J., Wietzes, P., Weickmann, J.L. & Glitz, D.G. (1984) The amino acid sequence of human pancreatic ribonuclease. Anal. Biochem. 136, 48-64.
  • Bennett, M.J., Choe, S. & Eisenberg, D.S. (1994) Domain swapping: Entangling alliances between proteins. Proc. Natl. Acad. Sci. U.S.A. 91, 3127-3131.
  • Bennett, M.J., Schlunegger, M.P. & Eisenberg, D. (1995) 3D Domain swapping: A mechanism for oligomer assembly. Protein Sci. 4, 2455-2468.
  • Bjarnadottir, M., Nilsson, C., Lindstrom, V., Westman, A., Davidsson, P., Thormodsson, F., Blondal, H., Gudmundsson, G. & Grubb, A. (2001)The cerebral hemorrhage-producing cystatin C variant (L68Q) in extracellular fluids. Amyloid 8, 1-10.
  • Blake, C. & Serpell, L. (1996)Synchrotron X-ray studies suggest that the core of the transthyretin amyloid fibril is a continuous b-sheet helix. Structure 4, 989-998.
  • Bode, W., Engh, R., Musil, D., Thiele, U., Huber, R., Karshnikov, A., Brzin, J., Kos, J. & Turk, V. (1988) The 2.0 A X-ray crystal structure of chicken egg white cystatin and its possible mode of interaction with cysteine proteinases. EMBO J. 7, 2593-2599.
  • Booth, D.R., Sunde, M., Bellotti, V., Robinson, C.V., Hutchinson, W.L., Fraser, P.E., Hawkins, P.N., Dobson, C.M., Radford, S.E., Blake, C.C. & Pepys, M.B. (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385, 787-793.
  • Chiti, F., Taddei, N., Bucciantini, M., White, P., Ramponi, G. & Dobson, C.M. (2000) Mutational analysis of the propensity for amyloid formation by a globular protein. EMBO J. 19, 1441-1449.
  • Cohen, A.S. (1986) General introduction and a brief history of the amyloid fibril; in Amyloidosis (Marrink, J. & Van Rijvijk, M.H., eds.) pp. 3-19, Nijhoff, Dordrecht.
  • Cohen, A.S. & Calkins, E. (1959) Electron microscopic observation on a fibrous component in amyloid of diverse origins. Nature 183, 1202-1203.
  • Cohen, A.S., Shirahamata, T. & Skinner, M. (1982) Electron microscopy of amyloid; in Electron Microscopy of Proteins (Harris, J.R., ed.) vol. 3, pp. 165-205, Academic Press, New York.
  • Cohen, F.E. & Prusiner, S.B. (1998) Pathologic conformations of prion proteins. Annu. Rev. Biochem. 67, 793-819.
  • Crestfield, A.M., Stein, W.H. & Moore, S. (1962) On the aggregation of bovine pancreatic ribonuclease. Arch. Biochem. Biophys. 1 (Suppl.), 217-222.
  • Crestfield, A.M., Stein, W.H. & Moore, S. (1963) Properties and conformation of the histidine residues at the active site of ribonuclease. J. Biol. Chem. 238, 2421-2428.
  • D'Alessio, G. (1999) Evolution of oligomeric proteins. Eur. J. Biochem. 266, 699-708.
  • Dieckmann, T., Mitschang, L., Hofmann, M., Kos, J., Turk, V., Auerswald, E.A., Jaenicke, R. & Oschkinat, H. (1993) The structure of native phosphorylated chicken cystatin and of recombinant unphosphorylated variant in solution. J. Mol. Biol. 234, 1048-1059.
  • Dobson, C.M. (1999) Protein misfolding, evolution and disease. Trends Biochem. Sci. 24, 329-332.
  • Ekiel, I. & Abrahamson, M. (1996) Folding-related dimerization of human cystatin C. J. Biol. Chem. 271, 1314-1321.
  • Ekiel, I., Abrahamson, M., Fulton, D.B., Lindahl, P., Storer, A.C., Levadoux, W., Lafrance, M., Labelle, S., Pomerleau, Y., Groleau, D., LeSauteur, L. & Gehring, K. (1997) NMR structural studies of human cystatin C dimers and monomers. J. Mol. Biol. 271, 266-277.
  • Engh, R.A., Dieckmann, T., Bode, W., Auerswald, E.A., Turk, V., Huber, R. & Oschkinat, H. (1993) Conformational variability of chicken cystatin. Comparison of structures determined by X-ray diffraction and NMR spectroscopy. J. Mol. Biol. 234, 1060-1069.
  • Gerhartz, B., Ekiel, I. & Abrahamson, M. (1998) Two stable unfolding intermediates of the disease-causing L68Q variant of human cystatin C. Biochemistry 37, 17309-17317.
  • Glenner, G.G. (1980a) Amyloid deposits and amyloidosis — the b-fibrilloses 1. N. Engl. J. Med. 302, 1283-1292.
  • Glenner, G.G. (1980b) Amyloid deposits and amyloidosis — the b-fibrilloses 2. N. Engl. J. Med. 302, 1333-1343.
  • Glenner, G.G., Eanes, E.D. & Page, D.L. (1972) The relation of the properties of congo red-stained amyloid fibrils to the beta-conformation. J. Histochem. Cytochem. 20, 821-826.
  • Grubb, A. (2000) Cystatin C — properties and use as diagnostic marker. Adv. Clin. Chem. 35, 63-99.
  • Janowski, R., Kozak, M., Jankowska, E., Grzonka, Z., Grubb, A., Abrahamson, M. & Jaskólski, M. (2001) Human cystatin C, an amyloidogenic protein, dimerizes through three-dimensional domain swapping. Nat. Struct. Biol. 8, 316-320.
  • Klafki, H.-W., Pick, A.I., Pardowitz, I., Cole, T., Awni, L.A., Barnikol, H.V., Mayer, F., Kratzin, H.D. & Hilschmann, N. (1993) Reduction of disulfide bonds in an amyloidogenic Bence Jones protein leads to formation of "amyloid-like" fibrils in vitro. Biol. Chem. Hoppe- Seyler 374, 1117-1122.
  • Kozak, M., Jankowska, E., Janowski, R., Grzonka, Z., Grubb, A., Alvarez-Fernandez, M., Abrahamson, M. & Jaskolski, M. (1999) Expression of a selenomethionyl derivative and preliminary crystallographic studies of human cystatin C. Acta Crystallogr. D Biol Crystallogr. 55, 1939-1942.
  • Liu, Y., Hart, P.J., Schlunegger, M.P. & Eisenberg, D. (1998) The crystal structure of a 3D domain-swapped dimer of RNase A at 2.1 Â resolution. Proc. Natl. Acad. Sci. U.S.A. 95, 3437-3442.
  • Liu, Y., Gotte, G., Libonati, M. & Eisenberg, D. (2001) A domain-swapped RNase A dimer with implications for amyloid formation. Nat. Struct. Biol. 8, 211-214.
  • Mazzarella, L., Capasso, S., Demasi, D., Di Lorenzo, G., Mattia, C.A. & Zagari, A. (1993) Bovine seminal ribonuclease: Structure at 1.9 Â resolution. Acta Crystallogr. D Biol Crystallogr 49, 389-402.
  • McPherson, A. (1998) Crystallization of Biological Macromolecules. Cold Spring Harbor Laboratory Press, New York.
  • Miers, H.A. & Isaac, F. (1907) The spontaneous crystallization of binary mixtures: Experiments on salol and betol. Proc. Roy. Soc. Lond. A 79, 322.
  • Minor, D.L., Jr. & Kim, P.S. (1996) Context-dependent secondary structure formation of a designed protein sequence. Nature 380, 730-734.
  • Murray, A.J., Head, J.G., Barker, J.J. & Brady, R.L. (1998) Engineering an intertwined form of CD2 for stability and assembly. Nature Struct. Biol. 5, 778-782.
  • Murray, A.J., Lewis, S.J., Barclay, A.N. & Brady, R.L. (1995) One sequence, two folds: A metastable structure of CD2. Proc. Natl. Acad. Sci. U.S.A. 92, 7337-7341.
  • Ogihara, N.L., Ghirlanda, G., Bryson, J.W., Gingery, M., DeGardo, W.F. & Eisenberg, D. (2001) Design of three-dimensional domain-swapped dimers and fibrous oligomers. Proc. Natl. Acad. Sci. U.S.A. 98, 1404-1409.
  • Olafsson, I. & Grubb, A. (2000) Hereditary cystatin C amyloid angiopathy. Amyloid 7, 70-79.
  • Park, C. & Raines, R.T. (2000) Dimer formation by a "monomeric" protein. Protein Sci. 9, 2026-2033.
  • Pei, X.Y., Holliger, P., Murzin, A.G. & Williams, R.L. (1997) The 2.0-Ä resolution crystal structure of a trimeric antibody fragment with noncognate Vh-Vl domain pairs shows a rearrangement of Vh CDR3. Proc. Natl. Acad. Sci. U.S.A. 94, 9637-9642.
  • Perutz, M.F. (1997) Mutations make enzymes polymerize. Nature 385, 773-774.
  • Perutz, M.F. (1999) Glutamine repeats and neurodegenerative diseases: Molecular aspects. Trends. Biochem. Sci. 24, 58-63.
  • Perutz, M.F., Johnson, T., Suzuki, M. & Finch, J.T. (1994) Glutamine repeats as polar zippers: Their possible role in inherited neurodegene rative diseases. Proc. Natl. Acad. Sci. U.S.A. 91, 5355-5358.
  • Piccoli, R., Tamburrini, M., Piccialli, G., Di Donato, A., Parente, A. & D'Alessio, G. (1992) The dual-mode quaternary structure of seminal RNase. Proc. Natl. Acad. Sci. U.S.A. 89, 1870-1874.
  • Piccoli, R., Di Gaetano, S., De Lorenzo, C., Grauso, M., Monaco, C., Spalletti-Cernia, D., Laccetti, P., Cinatl, J., Matousek, J. & D'Alessio, G. (1999) A dimeric mutant of human pancreatic ribonuclease with selective cytotoxicity toward malignant cells. Proc. Natl. Acad. Sci. U.S.A. 96, 7768-7773.
  • Rawlings, N.D. & Barrett, A.J. (1990) Evolution of proteins of the cystatin superfamily. J. Mol. Evol. 30, 60-71.
  • Schlunegger, M.P., Bennett, M.J. & Eisenberg, D. (1997) Oligomer formation by 3D domain swapping: A model for protein assembly and misassembly; in Advances in Protein Chemistry (Richards, F.M., Eisenberg, D.S. & Kim, P.S., eds.) vol. 50, pp. 61-122, Academic Press, New York.
  • Sipe, J.D. & Cohen, A.S. (2000) Review: history of the amyloid fibril. J. Struct. Biol. 130, 88-98.
  • Sunde, M. & Blake, C.C.F. (1998) From the globular to the fibrous state: Protein structure and structural conversion in amyloid formation. Quat. Rev. Biophys. 31, 1-39.
  • Sunde, M., Serpell, L.C., Bartlam, M., Fraser, P.E., Pepys, M.B. & Blake, C.C.F. (1997) Common core structure of amyloid fibrils by synchrotron X-ray diffraction. J. Mol. Biol. 273, 729-739.
  • Teplow, D.B. (1998) Structural and kinetic features of amyloid b-protein fibrillogenesis. Amyloid 5, 121-142.
  • Wlodawer, A., Bott, R. & Sjolin, L. (1982) The refined crystal structure of ribonuclease A at 2. 0 Ä resolution. J. Biol. Chem. 257, 1325-1332.
  • Wlodawer, A., Svansson, L.A., Sjolin, L. & Gilliland, G.L. (1988) Structure of phosphate-free ribonuclease A refined at 1.26 Ä resolution. Biochemistry 27, 2705-2717.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-bcfcc1c7-eaf1-44a5-928c-fd7ab06b4b1d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.