A. SALA, C. BUCCELLATI, S. ZARINI, M. BOLLA, A. BONAZZI, G.C. FOLCO

 11.3

THE POLYMORPHONUCLEAR LEUKOCYTE: A CELL TUNED FOR TRANSCELLULAR BIOSYNTHESIS OF CYS-LEUKOTRIENES

Center for Cardiopulmonary Pharmacology, Inst. of Pharmacological Sciences, Univ. of Milano, Milano, Italy.

Sulfidopeptide leukotrienes (cysLT) are potent vasoactive mediators that can
constrict coronary vessels and alter caliber of the microcirculation. They can be
formed "*in situ*" *via* a peculiar type of cell communication

PMNL and made available for transcellular biosynthesis. This has been
accomplished by measuring the relative amounts of enzymatic vs non-enzymatic leukotriene A_4 -derived metabolites after challenge with the Ca^{2+} -ionophore A23187, using PMNL suspensions at different concentrations. Non-enzymatic leukotriene A_4 -derived metabolites were used as a quantitative index of the amount of leukotriene A_4 released into the extracellular milieu.

In human, as well as in bovine PMNL, the relative amounts of non-enzymatic vs enzymatic leukotriene A_4 -derived metabolites increased with decreasing cell concentrations. By diminishing possible cell-cell interactions via increased dilution, it is calculated that approx. 60% of leukotriene A_4 synthesized is released from the PMNL.

These data provide evidence that, in PMNL, transfer of leukotriene A_{μ} to neighbouring acceptor cells is taking place as a predominant mechanism of cell communication.

Key words: leukotrienes, polymorphonuclear leukocytes, endothelial cells, cell-cell interaction, ischemia, coronary artery, transcellular biosynthesis.

INTRODUCTION

The generation of leukotrienes (LT) exibits a remarkable cellular specificity; polymorphonuclear leukocytes (PMNL) contain a 5-lipoxygenase (primary enzyme) to generate the 5-hydroperoxy eicosatetraenoic acid and a leukotriene A_4 (LTA₄) hydrolase (secondary enzyme) to generate leukotriene B_4 (LTB₄).

On the other hand, eosinophils share with PMNL the same primary enzyme
but possess a leukotriene C_4 synthase as a secondary enzyme to synthesize the
cysteinyl leukotriene (cys-LT) leukotriene C_4 (LTC₄). Recently a cells (acceptor cells) into LT, B_4 or C_4 . Such reaction, which requires the cooperation of different cell types, has been termed "transcellular biosynthesis"

and was first demonstrated by Bunting et al. and Marcus et al. (1, 2).
Recent studies using organ systems perfused with PMNL (3-5) have indicated the pathophysiological relevance of the transcellular metabolism of LTA_4 in the rabbit heart, in particular when tight cell-cell interactions occur, such as during adhesion and diapedesis of PMNL through the microvascular endothelium. In light of these observations it was of
interest to assess the relative amount of LTA_4 released from PMNL, and
therefore available for transcellular biosynthesis of cys-LT, with respect to
to catalyzes conversion of LTA_4 into LTB_4 . The extracellular (released) LTA_4 will react with water with a half-life lower than 30 sec (6) to yield the non enzymatic products, Δ^6 -trans-LTB₄, Δ^6 -trans-12-epi-LTB₄, and 5,6 dihydroxy-eicosatetraenoic acid isomers. The hypothesis that in diluted cell preparations, LTA_4 would have less chance of being reabsorbed and metabolized by vicinal PMNL, has been tested. In a previous study, Cluzel *et al.* (7) showed that the use of diluted cell suspensions provided important information concerning the amount of $LTB₄$ released by PMNL.

In the present paper we provide evidence that significant transcellular metabolism of LTA, does indeed take place in a rabbit heart perfused with purified human PMNL preparations and that LTA, represents the predominant 5-LO metabolite released from PMNL.

MATERIAL AND METHODS

Chemicals and reagents

All chemicals used were reagent-grade and obtained from commercial sources. Eicosanoids
were purchased from Cayman Chemical Co. (Ann Arbor, MI, U.S.A.). HPLC-gradient grade
solvents were obtained from Merck (Darmstadt, D).

Isolated perfused heart preparation

Albino rabbits weighing between 2.5 and 3.0 kg were utilized. Hearts were isolated and perfused retrogradely at 37°C through the aorta as previously described (8). The rate of perfusion was maintained at 20 ml min⁻¹ with a roller pump (Gilson Minipulse 2, Biolabo, Milano). A latex balloon was inserted into the left ventricular cavity for measurement of left ventricular pressure (LVP) and dP/dt, recorded with a Hewlett Packard carrier amplifier (mod. 8805B) and recorder (mod. 7754A). The balloon was slowly filled with saline until end-diastolic pressure stabilized between 8 and 12 mm Hg. All hearts were equilibrated for 30 minutes at a flow rate of 20 ml min⁻¹ to allow extensive rinsing of the vascular bed; the hearts were then perfused in a recirculating system at the same flow rate of 20 ml min⁻¹ with a total volume of 50 ml. Coronary perfusion pressure (CPP) and left ventricular end-diastolic pressure (LVEDP) were monitored continuously.

Leukocyte-perfused hearts

Isolated rabbit hearts were perfused with human neutrophils isolated from blood (40 ml) withdrawn from healthy donors that had not taken medications for at least one week and purified using a discontinuous Percoll density gradient $(42\%$ and 51% , v/v , in PPP) as described previously (9).

Immediately prior to heart perfusion, PMNL were supplied with Ca^{2+} (2 mM) and Mg²⁺ (0.5 mM), and subsequently diluted to 5 ml in Tyrode's solution for infusion into the recirculating medium of the isolated rabbit hearts.

Isolated hearts were allowed to equilibrate under recirculating flow for 15 minutes and the PMNL suspension was added at a flow rate of 0.6 ml/min, in order to avoid mechanical obstruction of coronary vasculature, and left to equilibrate for additional 5 minutes before challenge with A-23187 (0.5 μ M) 30 minutes later, the entire heart reservoir (approx. 45 ml) was withdrawn for storage under argon athmosphere at -20° C until HPLC analysis.

RP-HPLC analysis

Samples were diluted with water to a final methanol concentration lower than 20% and extraction was quickly carried out using a solid phase cartridge (Supelclean LC-18, Supelco, Bellafonte, PA); the retained material was eluted using 90% aqueous MeOH. After evaporation, the dried extract was reconstituted in 600 %l of HPLC mobile phase A (methanol/acetonitrile/water/acetic acid 10/10/80/0.02, v/v/v/v, pH 5.5 with ammonium hydroxide) and injected into an HPLC gradient pump system (Mod. 126, Beckman Analytical, Palo Alto, CA, USA) connected to a diode-array UV detector (Mod. 168, Beckman Analytical) using a microprocessor-controlled autosampler (Jasco 851-AS, Tokio, J), with sample kept at 4°C. UV absorbance was monitored at 280 nm, and full UV spectra (210—340 nm) acquired at a rate of 0.5 Hz.

A multilinear gradient from solvent A to solvent B (50% methanol, 50% acetonitrile) at a flow rate of 0.5 ml/min, was used to elute a 3×150 mm column (RP-18 endcapped Ecocart Superspher, 4 um, Merck). Solvent B was increased to 35% over 6 min, to 65% over 25 min and to 100% over 3 min. This method allows separation of $LTB₄$ from 5(S),12(S)-dihydroxy-eicosatetraenoic acid (5,12-diHETE) as well as from non-enzymatic $LTA₄$ metabolites.

Positive identification of enzymatic and non-enzymatic LTA₄ metabolites was obtained through UV spectral analysis of chromatographic peaks eluting at characteristic retention times. Quantitation was carried out on positively identified peaks only, using their HPLC peak areas relative to that of PGB₂ at 280 nm, and calculated from the responses of standard compounds. The ratio (enzymatic-LTA₄ metabolites)/(non enzymatic-LTA₄ metabolites) was calculated from the
HPLC data. Enzymatic-LTA₄ metabolites was used as a collective name for LTC₄, LTB₄,
20-hydroxy-LTB₄ and 20-carboxy-LT

Normalized data were obtained expressing as 100% the total amount of LTA,-derived metabolites observed in a given sample.

RESULTS

Langendorff heart experiments

Infusion of exogenous LTD_4 (4 nmoles, bolus injection) into the isolated rabbit heart, resulted in a rapid, but relatively transient, increase in coronary perfusion pressure (*Fig. 1*) as a result of the direct vasocons Infusion of ex
bit heart, resu
fusion pressure
LT.

Fig. 1. Effect of a bolus injection of exogenous $LTD₄$ (4 nmoles) on coronary resistance to perfusion pressure (CPP) in a Langendorff rabbit heart preparation.

Fig. 2. Increase in coronary resistance to perfusion pressure (CPP) in isolated rabbit hearts perfused under recirculating conditions
with human PMNL $(1 \times 10^5 \text{ cells/ml})$ and challenged with A-23187, 0.5 μ M.

presence of purified PMNL a severe increase in coronary resistance to perfusion pressure took place which was slow in onset (slow reacting) and long Challenge of the rabbit heart with A-23187 (0.5 μ M), per se, did not alter
myocardial contractility nor resistance to perfusion pressure. Similarly, the
simple addition of 5×10^6 purified PMNL did not modify any of

PMNL experiments

Decreasing PMNL concentration from 20×10^6 cells ml⁻¹ to 1×10^6 cells ml^{-1} resulted in a significant increase in non enzymatic-LTA, metabolites (from 53.9 ± 1.9 to 110.4 ± 8.3 pmol/10⁶ PMNL, p < 0.01), while the total LTA₄-derived metabolites, on a per cell basis, did not change $(252.4 \pm 11.3$ and 272.6 ± 23.8 pmol/10⁶ PMNL, at 20×10^6 and 10^6 PMNL ml⁻¹ respectively). The amount of non enzymatic-LTA₄ metabolites expressed as a percent of the total $LTA₄$ -derived metabolites, showed a progressive increase from 21.5% at 20×10^6 PMNL ml⁻¹ to 41.1% at 1×10^6 PMNL ml⁻¹ (*Fig.* 3). correlated significantl
recirculating buffer 3(
ion from 20×10^6 cells
rease in non enzyma
mol/10⁶ PMNL, p<(
er cell basis, did not ch
 20×10^6 and 10⁶ PMN
A₄ metabolites express
nowed a progressive ir
at $1 \$ 1.20×10^6 cells 1
non enzymatic
PMNL, $p < 0.0$
sis, did not char
and 10^6 PMNL
bolites expressed
progressive increased into
 $\frac{6.001 \text{ m} \cdot 10^{-1}}{10^{1}}$

a of PMNL ml
ic-LTA₄ metal
p < 0.0001) (7
plism of LTA₄
pns of syntheti
ential non enzy The correlation between the concentration of PMNL ml^{-1} and the ratio of (enzymatic-LTA, metabolites)/(non enzymatic-LTA, metabolites) best fitted a square polynomial correlation ($r^2 = 0.72$, p < 0.0001) (Tab. 1), indicating a possible saturation of enzymatic metabolism of $LTA₄$ in concentrated PMNL preparations. Increasing concentrations of synthetic $LTA₄$ added to PMNL (20 \times 10⁶ cells ml⁻¹), resulted in preferential non enzymatic metabolism

at concentrations of $LTA₄$ higher than 1 μ M. In fact, non enzymatic-LTA₄ metabolites represented 18.3% at 1 μ M, 41.7% at 3 μ M and 62.6% at 10 μ M.
Detectable amounts of 5-keto-(7E,9E,11Z,14Z)-eicosatetraenoic acid, identified by RP-HPLC retention time and on-line UV spectral analysis, were observed when synthetic LTA₄ was used at concentrations higher than 1 μ M. rations of LTA₄ higher that

i represented 18.3% at 1 μ M

amounts of 5-keto-(7E,9E,1)

LC retention time and on-lin

hetic LTA₄ was used at co

ratio of enzymatic- and non enzym

human PMNI rations of LTA₄ higher that

i represented 18.3% at 1 μ M

amounts of 5-keto-(7E,9E,1

LC retention time and on-linetic LTA₄ was used at contration

ratio of enzymatic- and non enzym

human PMNI

PMNL concentration

PMNL concentration	Enzymatic/Non enzymatic
$(x10^6 \text{ cells})$	Ratio \pm SEM
10 20	$1.46 + 0.0834$ 1.81 ± 0.138 2.26 ± 0.1574 2.76 ± 0.1411 $3.69 + 0.3025$

Table 1. The ratio of enzymatic- and non enzymatic-LTA₄ metabolites and cells concentration in human PMNL preparations.

Different concentrations of human PMNL were challenged with 5μ M A-23187 for 10 min at 37°C.

Decreasing the concentration of PMNL caused a marked increase of LTB₄ with respect to 20-OH- and 20-COOH-LTB₄, in agreement with previous data and suggesting that ω -oxidation of LTB_4 is mainly carried out after reuptake of released LTB_4 .

DISCUSSION

The generation of leukotrienes exhibits a remarkable cellular specificity;
however, in complex organ systems the cellular environment can influence
markedly the final biosynthetic profile and create conditions whereby
pro

spontaneously beating rabbit Langendorff heart preparation, indicate clearly
that the addition of human PMNL to the A-23187-perfused rabbit heart
triggers a massive increase in the coronary perfusion pressure (CPP) (and of dependent (5) and is fully ablated by pretreatment with the leukotriene

synthesis inhibitor BAY X1005 (15), which is a selective and bioavailable 5-lipoxygenase inhibitor (16—17). Similar results have been obtained by Grimminger and co-workers (4), using a different experimental model, who showed that perfusion and activation of PMNL in the isolated lung of the rabbit resulted in the production of increased amounts of cysteinyl leukotrienes with respect to activation of PMNL alone.

The existence of a temporal sequence between the a) increased adhesion of leukocytes to the vascular endothelium and b) the enhanced permeability of the arterial wall strongly supports the notion that conditions of tight adhesion between neutrophils and endothelial cells may create ап ideal microenvironment for transcellular biosynthesis of cys-LT, leading to a very efficient transfer of LTA₄ from one cell to the other. Recenty, Brady and Serhan reported on the transcellular synthesis of cys-LT in PMNL-glomerular EC coincubations (18). In this model, cys-LT formation was significantly blunted in the presence of monoclonal antibodies directed against CD11/CD18 integrins and L-selectin, providing the grounds for the hypothesis that adhesion molecule-mediated cell-cell interactions facilitate cys-LT biosynthesis. In addition, recent data obtained in our laboratory point to a possible role of NO as an endogenous modulator of PMNL adhesion and of transcellular synthesis of cys-LT (19). Pretreatment of the isolated rabbit heart with the NO-synthase inhibitor L-NMMA, followed by perfusion of PMNL and challenge, caused a very rapid adhesion of PMNL associated with synthesis of large amounts of cys-LT and dramatic increase in CPP. Restoration of NO synthesis with L-Arginine pretreatment, significantly decreased the challenge-induced adhesion of perfusing PMNL. None of these pharmacological interventions had any direct effect on LTA₄ formation, but rather emphasized the importance of PMNL-EC adhesion toward transcellular synthesis of cys-LT.

In light of these observations it was of interest to assess the relative amount of LTA, released from PMNL, and therefore available for transcellular biosynthesis of cysteinyl leukotrienes, with respect to total LTA₄ synthesized.

The results of the dilution experiments indicate that a significant fraction of $LTA₄$ is released before being metabolised to $LTB₄$, and is therefore made available for transcellular biosynthesis to cysteinyl leukotrienes by proximal cells. Recent results obtained by Sala et al. (20) indicate that in human PMNL preparations approx. 60% of the LTA₄ synthesized through activation of 5-LO by A-23187 is actually released into the extracellular milieu. Using a different experimental approach Palmentier (21) has come to the same conclusion suggesting that the fraction of $LTA₄$ secreted by PMNL could represent as much as 80% of the total. This is at variance with what is generally accepted (i.e. PMNL synthesize and release $LTBA₄$) and suggest that PMNL may represent cells specifically tuned for transcellular synthesis rather than for the synthesis of a chemotactic factor $(LTB₄)$.

Finally, the finding that $LTA₄$ represents the main 5-LO-derived metabolite released by PMNL, indicates that this unstable reactive intermediate could be considered as a lipid mediator itself, not as much for its intrinsic biological activity, as for its ability to promote the production of bioactive compounds in cells other than those in which it is synthesized.

REFERENCES

- . Bunting S, Gryglewski R, Moncada S, Vane JR. Arterial walls generate from prostaglandin endoperoxides a substance (prostaglandin X) which relaxes strips of mesenteric and coeliac arteries and inhibits platelet aggregation. Prostaglandin 1976; 12: 897—913.
- Marcus AJ, Weksler BB, Jaffe EA, Broekman MJ. Synthesis of prostacyclin from platelet-derived endoperoxides by cultured human endothelial cells. J Clin Invest 1980; 66: 979—986.
- 3. Sala A, Aliev GM, Rossoni G et al. Morphological and functional changes of coronary vasculature caused by transcellular biosynthesis of sulfidopeptide leukotrienes in isolated heart of rabbit. Blood 1996; 87(5): 1824—1832.
- 4. Grimminger F, Menger M, Becker G, Seeger W. Potentiation of leukotriene production following sequestration of neutrophils in isolated lungs: indirect evidence for intercellular leukotriene AAnAP₄ transfer. Blood 1988; 72: 1687-1692.
- 5. Sala A, Rossoni G, Buccellati C, Berti F, Folco GC, Maclouf J. Formation of sulphidopeptide-leukotrienes by cell-cell interaction causes coronary vasoconstriction in isolated, cell-perfused heart of rabbit. Br J Pharmacol 1993; 110: 1206—1212.
- 6. Fitzpatrick FA, Morton DR, Wynalda MA. Albumin stabilizes leukotriene A_4 . J Biol Chem 1982; 257: 4680—4683.
- . Cluzel M, Undem BJ, Chilton FH. Release of platelet-activating factor and the metabolism of leukotriene B_4 by the neutrophil when studied in a cell superfusion model. *J Immunol* 1989; 143: 3659—3665.
- 8. Berti F, Rossoni G, Magni F et al. Non-steroidal antiinflammatory drugs aggravate acute myocardial ischemia in perfused rabbit heart; a role for prostacyclin. J Cardiovasc Pharmacol 1988; 12: 438—444.
- 9. Haslett C, Guthrie LA, Kopaniac MM, Johnston RB, Henson PM. Modulation of multiple neutrophil functions by preparative methods for trace concentrations of bacteria! lipolysaccharide. Am J Pathol 1985; 119: 101—110.
- 10. Borgeat P, Nadeau M, Salari H, Fruteau de Laclos B. Leukotrienes: biosynthesis, metabolism, and analysis. Adv Lipid Res 1985; 21: 47—77.
- 11. Feinmark SJ, Cannon PJ. Endothelial cell leukotriene C, synthesis results from intracellular transfer of leukotriene A_4 synthesized by polymorphonuclear leukocytes. J Biol Chem 1986; 261: 16466—16472.
- 12. Maclouf JA, Murphy RC. Transcellular metabolism of neutrophil-derived leukotriene A, by human platelets. J Biol Chem 1988; 263: 174-181.
- 13. Dahinden CA, Clancy RM, Gross M, Chiller JM, Hugly TE. Leukotriene C, production by murine mast cells: evidence of a role for extracellular leukotriene A_4 . Proc Natl Acad Sci USA 1985; 82: 6632—6636.
- 14. Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interactions with granulocytes: tethering and signaling molecules. Immunology Today 1992; 13 (3): 93-100.

672

- 15. Rossoni G, Sala A, Berti F et al. Myocardial protection by the leukotriene synthesis inhibitor BAY X1005: importance of transcellular biosynthesis of cysteinyl-leukotrienes. J Pharmacol Exp Ther 1996; 276(1): 335—341.
- 16. Hatzelmann A, Fruchtmann R, Mohrs KH, Raddatz S, Muller-Peddinghaus R. Mode of action of the new selective leukotriene synthesis inhibitor BAY X1005 (R)-2-[4-(Quinolin-2-YL-Methoxy) Phenyl]-2-Cyclopentyl Acetic Acid and structurally related compounds. *Biochem Pharmacol* 1993; 45: 101—111.
- 17. Muller-Peddinghaus R, Kohlsdorfer C, Theisen-Popp P et al. BAY X1005, a new inhibitor of leukotriene synthesis: in vivo inflammation pharmacology and pharmacokinetics. J Pharmacol
Exp Ther 1993; 267: 51—55.
- 18. Brady HR, Serhan CN. Adhesion promotes transcellular leukotriene biosynthesis during neutrophil-glomerular endothelial cell interactions: inhibition by antibodies against CD18 and L-selectin. Biochem Biophys Res Commun 1992; 186: 1307-1314.
- 19. Buccellati C, Rossoni R, Bonazzi A et al. Nitric-oxide modulation of transcellular biosynthesis of cys-leukotrienes in rabbit leukocyte-perfused heart. Br J Pharmacol 1997; 120: 1128—1134.
- 20. Sala A, Bolla M, Zarini S, Muller-Peddinghaus R, Folco GC. Release of leukotriene A₄ vs of cys-leukotrienes in rabbit leukocyte-perfused heart. *Br J Pharmacol* 1997; 120: 1128—1134. Sala A, Bolla M, Zarini S, Muller-Peddinghaus R, Folco GC. Release of leukotriene A₄ vs leukotriene B₄ from human polymorp
- 21. Palmentier R, Krump E, Rocheleau H, Laviolette M, Borgeat P. Dynamics of 5-lipoxygenase product synthesis by human neutrophils and eosinophils in plasma and salt solution (HBSS). Inflammation Res 1995; 44(3): S259.

Received: July 3, 1997 Accepted: September 9, 1997

Author's address: G.C. Folco, Center for Cardiopulmonary Pharmacology. Inst. of Pharmacological Sciences, Univ. of Milano, Balzaretti 9, 20133 Milano, Italy. email: gcfolcoimiucca.csi.unimi.it