Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 14 | 2 | 289-304
Tytuł artykułu

A transcriptionally active copia-like retroelement in Citrus limon

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The plant nuclear genome is largely composed of mobile DNA, which can rearrange genomes and other individual gene structure and also affect gene regulation through various promoted activities: transposition, insertion, excision, chromosome breakage, and ectopic recombination. Ty1-copia-like retrotransposon is a widespread class of transposable elements in the plant kingdom, representing a large part of the total DNA content. Here, a novel retrotransposon-like sequence was isolated and identified as the Ty1-copia-like reverse transcriptase domain (named here CLCoy1), based on the homology of known elements. Fluorescence in situ hybridization, revealed that CLCoy1 was mainly located in telomeric and sub-telomeric regions along the Citrus chromosomes. CLCoy1 composes 3.6% of the genome and, interestingly, while transposons are mostly specific to a species, this element was identified in other Citrus species such as Citrus aurantium, Fortunella margarita and Citrus paradisi, but undetected in Poncirus trifoliata. We also determined that wounding, salt and cell culture stress produced transcriptional activation of this novel retroelement in Citrus limon. The novel Ty1-copia-like element CLCoy1 may have played a major role in shaping genome structure and size during Citrus species evolution.
Wydawca
-
Rocznik
Tom
14
Numer
2
Strony
289-304
Opis fizyczny
p.289-304,fig.,ref.
Twórcy
autor
  • University of Naples II, Via Vivaldi 43, 81100 Caserta, Italy
autor
autor
Bibliografia
  • 1. Kumar, A. and Bennetzen, J.L. Plant retrotransposons. Annu. Rev. Genet. 33 (1999) 479-532.
  • 2. Lonnig, W.E. and Saedler, H. Plant transposons: contributors to evolution? Gene 205 (1997) 245-253.
  • 3. Heslop-Harrison, J.S., Brandes, A., Taketa, S., Schmidt, T., Vershinin, A.V., Alkhimova, E.G., Kamm, A., Doudrick, R.L., Schwarzacher, T., Katsiotis, A., Kubis, S., Kumar, A., Pearce, S.R., Flavell, A.J. and Harrison, G.E. The chromosomal distribution of Ty1-copia group retrotransposable elements in higher plants and their implications for genome evolution, Genetica 100 (1997) 197-204.
  • 4. Bennetzen, J.L. Transposable element contributions to plant gene and genome evolution. Plant Mol. Biol. 42 (2000) 251-269.
  • 5. Su, P.Y. and Brown, T.A. Ty3/gypsy-like retrotransposon sequences in tomato. Plasmid 38 (1997) 148-157.
  • 6. Voytas, D.F., Cummings, M.P., Konieczny, A., Ausubel, F.M. and Rodermel, S. Copia-like retrotransposons are ubiquitous among plants. Proc. Natl. Acad. Sci. USA 89 (1992) 7124-7128.
  • 7. Grandbastien, M.A. Activation of plant retrotransposons under stress conditions. Trends Plant Sci. 3 (1998) 181-187.
  • 8. Hirochika, H., Sugimoto, K., Otsuki, Y. and Kanda, M. Retrotransposons of rice involved in mutations induced by tissue culture. Proc. Natl. Acad. Sci. USA 93 (1996) 7783-7788.
  • 9. Hirochika, H. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12 (1993) 2521-2528.
  • 10. Fann, J.Y. , Kovarik, A., Hemleben, V., Tsirekidze, N.I. and Beridze, T.G. Molecular and structural evolution of Citrus satellite DNA. Theor. Appl. Genet. 103 (2001) 1068-1073.
  • 11. Beridze, T., Tsirekidze, N. and Turishcheva, M.S. On the tertiary structure of the Citrus ichangensis satellite DNA. FEBS Lett. 338 (1994) 179-182.
  • 12. Asins, M.J., Monforte, A.J., Mestre, P.F. and Carbonell, E.A. Citrus and Prunus copia-like retrotransposons. Theor. Appl. Genet. 99 (1999) 503-510.
  • 13. De Felice, B., Ciarmiello, L.F., Wilson, R.R. and Conicella, C. Molecular analysis of a novel tandemly organized repetitive DNA sequence in Citrus limon (L.) Burm. J. Appl. Genet. 48 (2007) 233-239.
  • 14. De Felice, B., Wilson, R.R., Ciarmiello, L.F., Scarano, M.T. and Ferrante, S. Characterization of a novel satellite DNA sequence from Flying Dragon (Poncirus trifoliata). Genetica 127 (2006) 45-53.
  • 15. Wright, D.A., Ke, N., Smalle, J., Hauge, B.M., Goodman, H.M. and Voytas, D.F. Multiple non-LTR retrotransposons in the genome of Arabidopsis thaliana. Genetics 142 (1996) 569-578.
  • 16. Flavell, A.J., Smith, D.B. and Kumar, A. Extreme heterogeneity of Ty1-Copia group retrotransposons in plants. Mol. Genet. Genomics 231 (1992) 233-242.
  • 17. Hirochika, H. and Hirochika, R. Ty1-copia group retrotransposons as ubiquitous components of plant genomes. J. Genet. 68 (1993) 35-46.
  • 18. Suoniemi, A., Tanskanen, J. and Schulman, A.H. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 13 (1998) 699-705.
  • 19. Friesen, N., Brandes, A. and Heslop-Harrison, J.S. Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol. Biol. Evol. 18 (2001) 1176-1188.
  • 20. Murashige, T. and Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15 (1962) 473-497.
  • 21. Murray, M.G. and Thompson, W.F. Rapid isolation of high weight plant DNA. Nucleic Acids Res. 8 (1980) 4321-4325.
  • 22. Thompson, J. D., Higgins, D.G. and Gibson, T.J. Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22 (1994) 4673-4680.
  • 23. Saitou, N. and Nei, M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4 (1987) 406-425.
  • 24. Tamura, K., Dudley, J., Nei, M. and Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24 (2007) 1596-1599.
  • 25. Beguiristain, T., Grandbastien, M.A., Puigdomenech, P. and Casacuberta, J.M. Three Tnt1subfamilies show different stress-associated patterns of expression in tobacco. Consequences for retrotransposon control and evolution in plants. Plant Physiol. 127 (2001) 212-221.
  • 26. Kimura, Y., Tosa, Y., Shimada, S., Sogo, S., Kusaba, M., Sunaga, T., Betsuyaku, S., Eto, Y., Nakayashiki, H. and Mayama, S. OARE-1, a Ty1- copia retrotransposon in oat activated by abiotic and biotic stresses. Plant Cell Physiol. 42 (2001) 1345-1354.
  • 27. Kalendar, R., Tanskanen, J., Immonen, S., Nevo, E. and Schulma, A.H. Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc. Natl. Acad. Sci. USA 97 (2000) 6603-6607.
  • 28. McClintock, B. The significance of responses of the genome to challenge. Science 226 (1984) 792-801.
  • 29. Kidwell, M.G. and Lisch, D.R. Perspective: transposable elements, parasitic DNA, and genome evolution. Evolution 55 (2001) 1-24.
  • 30. Fedoroff, N. Transposons and genome evolution in plants. Proc. Natl. Acad. Sci. USA 97 (2000) 7002-7007.
  • 31. Rico-Cabanas, L. and Martinez-Izquierdo, J.A. CIRE1, a novel transcriptionally active Ty1-copia retrotransposon from Citrus sinensis. Mol. Genet. Genomics 277 (2007) 365-377.
  • 32. Miller, W.J., Hagemann, S., Reiter, E. and Pinsker, W. P-element homologous sequences are tandemly repeated in the genome of Drosophila guanche. Proc. Natl. Acad. Sci. USA 89 (1992) 4018-4022.
  • 33. Volff, J.N. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. Bioessays 28 (2006) 913-922.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-bb246b5b-eb6a-4601-aacc-d2964713240a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.