Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 3 |
Tytuł artykułu

Importance of glutamate dehydrogenase stimulation for glucose and glutamine synthesis in rabbit renal tubules incubated with various amino acids

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The effect of 2-aminobicyclo[2.2.1]heptan-2-carboxylic acid (BCH), an L-leucine nonmetabolizable analogue and an allosteric activator of glutamate dehydrogenase, on glucose and glutamine synthesis was studied in rabbit renal tubules incubated with alanine, aspartate or proline in the presence of glycerol and octanoate, i.e. under conditions of efficient glucose formation. With alanine+glycerol+octanoate the addition of BCH resulted in a stimulation of alanine and glycerol consumption, accompanied by an increased glucose, lactate and glutamine synthesis. In contrast, when alanine was substituted by either aspartate or proline, BCH altered neither glucose formation nor glutamine and glutamate synthesis, while an accelerated glycerol utilization was accompanied by a small increase in lactate production. In view of the BCH-induced changes in intracellular metabolite levels the acceleration of gluconeogenesis by BCH in the presence of alanine+glycerol+octanoate is probably due to (i) increased uptake of alanine via alanine aminotransferase, (ii) stimulation of phosphoenolpyruvate carboxykinase, a key-enzyme of gluconeogenesis, (iii) rise of glucose-6-phosphatase activity, as well as (iv)activation of the malate-aspartate shuttle resulting in an augmented glycerol utilization for lactate and glucose synthesis.
Wydawca
-
Rocznik
Tom
45
Numer
3
Opis fizyczny
p.825-831
Twórcy
autor
  • Warsaw University, Warsaw, Poland
autor
autor
autor
Bibliografia
  • 1. Michoudet. C., Martin, G. & Baverel, G. (1988) Pyruvate carboxylation in glutaminę synthesis from alanine by isolated guinea-pig renal corti­cal tubules. Pflugerx Arch. 412. 7-11.
  • 2. Baverel, G., Martin, G. & Michoudet, C. (1990) Glutaminę synthesis from aspartate in guinea- pig renal cortex. Biochem. J. 268, 437-442.
  • 3. Lietz, T. & Bryła, J. (1995) Glycerol and lac­tate induce reciprocal changes in glucose for­mation and glutaminę production in isolated rabbit kidney-cortex tubules incubated with as­partate. Arch. Biochem, Biophys. 321, 501- 509.
  • 4. Lietz, T., Winiarska, K. & Bryla, J. (1997) Ke­tone bodies activate gluconeogenesis in iso­lated rabbit renal cortical tubules incubated in the presence of amino acids and glycerol. Acta Biochim. Polon. 44, 323-332.
  • 5. Lietz. T., Rybka, J. & Bryla. J. (1998) Fatty ac­ids and glycerol are required to induce gluco­neogenesis from alanine in isolated rabbit re­nal cortical tubules. Amino Acids (in press).
  • 6. Fahien, L.A., Teller, J.K., Macdonald. M.J. & Fahien, C.M. (1990) Regulation of glutamate dehydrogenase activity by Mgi+ and magnifi- cation of leucine activation by Mg . Mol. Pharmacol. 37, 943-949.
  • 7. Zaleski, J., Wilson, D.F. & Erecinska, M. (1986) Glutamine metabolism in rat hepato- cytes. Stimulation by nonmetabolizable ana­log of leucine. J. Biol Chem. 261, 14082- 14090.
  • 8. Sener, A. & Malaisse, W.J. (1980) ^Leucine and nonmetabolized analogue activate pancre­atic islet glutamate dehydrogenase. Nature 288, 187-189.
  • 9. Sener, A., Leclercq-Meyer, V., Giroix, M.H., Malaisse, W.J. & HeUerstrom, C. (1987) Oppo­site effects of D-glucose and nonmetabolized analogue of L-leucine on respiration and secre­tion in insulin-producing tumoral cells (RINm5F). Diabetes 36, 187-192.
  • 10. Erecinska, M. & Nelson, D. (1990) Activation of glutamate dehydrogenase by leucine and its nonmetabolizable analogue in rat brain synap- toaomes. J. Neumchem. 54, 1335-1343.
  • 11. ZaWocki, K., Gemel, J. & Bryla, J. (1983) The inhibitory effect of octanoate, palmitate and oleate on glucose formation in rabbit kidney tubules. Biochim. Biophys. Acta 757, 111-118.
  • 12. Bergmeyer, H.U. (1965) MetJiods of Enzymatic Analysis. Verlag Chemie,Weinheim, Academic Press, New York, London.
  • 13. Chang, J., Kneht, R. & Braun, D.G. (1983) Amino acid analysis in picomole range by precolumn derivatization and high-per­formance liquid chromatography. Methods En- zymol 91, 41-48.
  • 14. Exton, J.H. & Park, C.R. (1967) Control of glu- coneogenesis in liver. J. Biol Chem. 242, 2622-2636.
  • 15. Pilkis, S.J., Riou, J.P. <6 Claus, T.H. (1976) Hormonal control of fl4C]glucose synthesis from [14CJdihydroxyacetone and glycerol in isolated liver hepatocytes. J. Biol. Chem. 251, 7841-7852.
  • 16. Meister, A. (1984) Enzymology of glutamine; in Glutamine Metabolism in Mammalian Tis­sues (Haussinger, D. & Siess, H., eds.) pp. 3- 15, Springer-Verlag, Berlin, Heidelberg.
  • 17. Titheradge, M.A., Picking, R.A. & Haynes, R.C., Jr. (1992) Physiological concentrations of 2-oxoglutarate regulate the activity of phos- phoenolpyruvate carboxykinase in liver. Bio- chem. J. 285, 767-771.
  • 18.Strzelecki, T., Strzelecka, D., Koch, C.D. & La- Noue, K.F. (1988) Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate-aspartate cycle. Arch. Biochem. Bio- phys. 264, 310-320.
  • 19. Berry, M.N., Kun, E. & Werner, H.V. (1973) Regulatory role of reducing-equivalent trans­fer from substrate to oxygen in the hepatic me­tabolism of glycerol and sorbitol. Eur. J. Bio­chem. 33, 407-417.
  • 20. Berry, M.N., Philips, J.W. & Grivell, A.R. (1992) Interactions between mitochondria and cytoplasm in isolated hepatocytes. Curr. Top. CeU. Reg. 33,309-328.
  • 21. Mithieux, G., Vega, F.V. & Riou, J.-P. (1990) The liver glucose-6-phosphatase of intact mi­crosomes is inhibited and displays sigmoid ki­netics in the presence of /5-ketoglutarate- magnesium and oxaloacetate-magnesium che­lates. J. BioL Chem. 265, 20364-20368.
  • 22. Minassian, C., Ajzannay, A., Riou, J.-P. & Mithieux, G. (1994) Investigation of the mechanism of glycogen rebound in the live of 72-hour fasted rate. J. BioL Chem. 269, 16585-16588.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-baf13ee1-7045-4155-8dba-f4349cc7f209
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.