Warianty tytułu
Języki publikacji
Abstrakty
The effect of 2-aminobicyclo[2.2.1]heptan-2-carboxylic acid (BCH), an L-leucine nonmetabolizable analogue and an allosteric activator of glutamate dehydrogenase, on glucose and glutamine synthesis was studied in rabbit renal tubules incubated with alanine, aspartate or proline in the presence of glycerol and octanoate, i.e. under conditions of efficient glucose formation. With alanine+glycerol+octanoate the addition of BCH resulted in a stimulation of alanine and glycerol consumption, accompanied by an increased glucose, lactate and glutamine synthesis. In contrast, when alanine was substituted by either aspartate or proline, BCH altered neither glucose formation nor glutamine and glutamate synthesis, while an accelerated glycerol utilization was accompanied by a small increase in lactate production. In view of the BCH-induced changes in intracellular metabolite levels the acceleration of gluconeogenesis by BCH in the presence of alanine+glycerol+octanoate is probably due to (i) increased uptake of alanine via alanine aminotransferase, (ii) stimulation of phosphoenolpyruvate carboxykinase, a key-enzyme of gluconeogenesis, (iii) rise of glucose-6-phosphatase activity, as well as (iv)activation of the malate-aspartate shuttle resulting in an augmented glycerol utilization for lactate and glucose synthesis.
Twórcy
Bibliografia
- 1. Michoudet. C., Martin, G. & Baverel, G. (1988) Pyruvate carboxylation in glutaminę synthesis from alanine by isolated guinea-pig renal cortical tubules. Pflugerx Arch. 412. 7-11.
- 2. Baverel, G., Martin, G. & Michoudet, C. (1990) Glutaminę synthesis from aspartate in guinea- pig renal cortex. Biochem. J. 268, 437-442.
- 3. Lietz, T. & Bryła, J. (1995) Glycerol and lactate induce reciprocal changes in glucose formation and glutaminę production in isolated rabbit kidney-cortex tubules incubated with aspartate. Arch. Biochem, Biophys. 321, 501- 509.
- 4. Lietz, T., Winiarska, K. & Bryla, J. (1997) Ketone bodies activate gluconeogenesis in isolated rabbit renal cortical tubules incubated in the presence of amino acids and glycerol. Acta Biochim. Polon. 44, 323-332.
- 5. Lietz. T., Rybka, J. & Bryla. J. (1998) Fatty acids and glycerol are required to induce gluconeogenesis from alanine in isolated rabbit renal cortical tubules. Amino Acids (in press).
- 6. Fahien, L.A., Teller, J.K., Macdonald. M.J. & Fahien, C.M. (1990) Regulation of glutamate dehydrogenase activity by Mgi+ and magnifi- cation of leucine activation by Mg . Mol. Pharmacol. 37, 943-949.
- 7. Zaleski, J., Wilson, D.F. & Erecinska, M. (1986) Glutamine metabolism in rat hepato- cytes. Stimulation by nonmetabolizable analog of leucine. J. Biol Chem. 261, 14082- 14090.
- 8. Sener, A. & Malaisse, W.J. (1980) ^Leucine and nonmetabolized analogue activate pancreatic islet glutamate dehydrogenase. Nature 288, 187-189.
- 9. Sener, A., Leclercq-Meyer, V., Giroix, M.H., Malaisse, W.J. & HeUerstrom, C. (1987) Opposite effects of D-glucose and nonmetabolized analogue of L-leucine on respiration and secretion in insulin-producing tumoral cells (RINm5F). Diabetes 36, 187-192.
- 10. Erecinska, M. & Nelson, D. (1990) Activation of glutamate dehydrogenase by leucine and its nonmetabolizable analogue in rat brain synap- toaomes. J. Neumchem. 54, 1335-1343.
- 11. ZaWocki, K., Gemel, J. & Bryla, J. (1983) The inhibitory effect of octanoate, palmitate and oleate on glucose formation in rabbit kidney tubules. Biochim. Biophys. Acta 757, 111-118.
- 12. Bergmeyer, H.U. (1965) MetJiods of Enzymatic Analysis. Verlag Chemie,Weinheim, Academic Press, New York, London.
- 13. Chang, J., Kneht, R. & Braun, D.G. (1983) Amino acid analysis in picomole range by precolumn derivatization and high-performance liquid chromatography. Methods En- zymol 91, 41-48.
- 14. Exton, J.H. & Park, C.R. (1967) Control of glu- coneogenesis in liver. J. Biol Chem. 242, 2622-2636.
- 15. Pilkis, S.J., Riou, J.P. <6 Claus, T.H. (1976) Hormonal control of fl4C]glucose synthesis from [14CJdihydroxyacetone and glycerol in isolated liver hepatocytes. J. Biol. Chem. 251, 7841-7852.
- 16. Meister, A. (1984) Enzymology of glutamine; in Glutamine Metabolism in Mammalian Tissues (Haussinger, D. & Siess, H., eds.) pp. 3- 15, Springer-Verlag, Berlin, Heidelberg.
- 17. Titheradge, M.A., Picking, R.A. & Haynes, R.C., Jr. (1992) Physiological concentrations of 2-oxoglutarate regulate the activity of phos- phoenolpyruvate carboxykinase in liver. Bio- chem. J. 285, 767-771.
- 18.Strzelecki, T., Strzelecka, D., Koch, C.D. & La- Noue, K.F. (1988) Sites of action of glucagon and other Ca2+ mobilizing hormones on the malate-aspartate cycle. Arch. Biochem. Bio- phys. 264, 310-320.
- 19. Berry, M.N., Kun, E. & Werner, H.V. (1973) Regulatory role of reducing-equivalent transfer from substrate to oxygen in the hepatic metabolism of glycerol and sorbitol. Eur. J. Biochem. 33, 407-417.
- 20. Berry, M.N., Philips, J.W. & Grivell, A.R. (1992) Interactions between mitochondria and cytoplasm in isolated hepatocytes. Curr. Top. CeU. Reg. 33,309-328.
- 21. Mithieux, G., Vega, F.V. & Riou, J.-P. (1990) The liver glucose-6-phosphatase of intact microsomes is inhibited and displays sigmoid kinetics in the presence of /5-ketoglutarate- magnesium and oxaloacetate-magnesium chelates. J. BioL Chem. 265, 20364-20368.
- 22. Minassian, C., Ajzannay, A., Riou, J.-P. & Mithieux, G. (1994) Investigation of the mechanism of glycogen rebound in the live of 72-hour fasted rate. J. BioL Chem. 269, 16585-16588.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-baf13ee1-7045-4155-8dba-f4349cc7f209