Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 17 | 1 | 79-88
Tytuł artykułu

Potassium effect on ion leakage, water usage, fruit yield and biomass production by strawberry plants grown under NaCl stress

Warianty tytułu
PL
Wplyw potasu na wyplyw jonow, zuzycie wody, plon owocow i produkcje biomasy truskawek uprawianych w warunkach stresu solnego
Języki publikacji
EN
Abstrakty
EN
Strawberry plants were grown in soilless culture under greenhouse conditions to investigate the effect of supplementary potassium fertilization on growth and development of plants exposed to high NaCl concentration (35 mmol/L). Treatments included: 1) nutrient solution alone (N); 2) N + 35 mmol/L NaCl (NS); 3) NS + 5 mmol/L K2SO4 (NSK1); 4) NS + 10 mmol/L K2SO4 (NSK2). Results showed that leaf area, ion leakage (EC), chlorophyll contents, biomass production and water usage were negatively affected by NaCl stress. Moreover, fruit set and fruit number decreased under stress condition. Mineral content (Na, Cl, Ca and K) in various plant parts increased upon NaCl stress. Although supplementary potassium fertilization positively influenced the leaf area development, chlorophyll contents and reproductive parameters, it had a negative effect on biomass production. On the other hand, in addition to K and Ca, supplementary potassium increased Na and Cl content. These results showed that potassium reduces some negative effects of NaCl stress in strawberry.
PL
Truskawki uprawiano w kulturze bezglebowej uzupełnionej dodatkowo nawozem potasowym i w warunkach wysokiego zasolenia NaCl (35 mmol/L) i określano wpływ tych czynników na wzrost i rozwój roślin. Traktowania obejmują pożywki: 1) kontrolną(N); 2) N + 35 mmol/L NaCl (NS); 3) NS + 5 mmol/L K2SO4 (NSK1); 4) NS + 10 mmol/L K2SO4 (NSK2). Stwierdzono, że powierzchnia liści, wypływ jonów (EC), zawarto ść chlorofilu, produkcja biomasy i zużycie wody były obniżone w warunkach stresu solnego. Poza tym zawiązywanie owoców i liczba owoców były niższe w warunkach stresu solnego. Zawartość składników mineralnych (Na, Cl, Ca i K) w różnych częściach roślin była wyższa w warunkach stresu solnego. Dodatkowe uzupełnienie pożywki nawozem potasowym w warunkach stresu solnego wpfynęło pozytywnie na rozwój liści, zawartość chlorofilu i rozwój owoców, ale miało ujemny wpływ na produkcję biomasy. Wykazano, ze potas powoduje obniżenie negatywnego wpływu powodowanego przez stres solny na wzrost i rozwój truskawki.
Wydawca
-
Rocznik
Tom
17
Numer
1
Strony
79-88
Opis fizyczny
p.79-88,ref.
Twórcy
autor
  • Birjand University, Birjand, Iran
autor
autor
Bibliografia
  • Adams P. 1991. Effect of increasing the salinity of the nutrient solution with major nutrient or sodium chloride on the yield quality and composition of tomato grown in rockwool. J. HORT. SCI. 66(2): 201-207.
  • A.O.A.C. 1975. Official methods of analysis of the association of official analytical chemist. 10th ed., Washington, D. C.
  • Awada S., Campbell W.F., Dudley L.M., Jurinak J.J., Khan M.A. 1995. Interactive effects of sodium chloride, sodium sulphate, calcium sulphate and calcium chloride on snapbean growth, photosynthesis, and ion uptake. J. PLANT. NUTR. 18(5): 889-900.
  • Awang Y.B., Atherton J.G. 1995. Growth and fruiting responses of strawberry plants grown on rockwool to shading and salinity. SCI. HORT. 62: 25-31.
  • Cachorro P., Olmos E., Ortiz A., Cerda A. 1995. Salinity-induced changes in the structure and ultrastructure of bean root cells. BIOL. PLANT. 37: 273-283.
  • Chapman H.D., Pratt P.F. 1982. Methods of analysis for soils, plants and water. Chapman Publisher, Riverside, CA.
  • Chauhan R.P.S., Chauhan C.P.S., Kumar D. 1980. Free proline accumulation in cereals in relation to salt tolerance. PLANT AND SOIL 57: 167-175.
  • Chen C.T., Li C.C., Kao C.H. 1991. Senescence of rice leaves. XXXI. Changes of chlorophyll, proteins and polyamine contents and ethylene production during senescence of a chlorophyll-deficient mutant. J. PLANT. GROWTH. REG. 10: 201­205.
  • Dhindsa R.S., Plumb-Dhindsa P., Thorpe T.A. 1981. Leaf senescence correla­ted with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. EXP. BOT. 32: 93-101.
  • Flowers T.J., Yeo A.R. 1995. Breeding for salinity resistance in crop plants: where next? AUST. J. PLANT PHYSIOL. 22: 875-884.
  • Glenn E.P., O'Leary J.W. 1985. Produc­tivity and irrigation requirements of halophytes grown with seawater in the Sonora Desert. J. ARID ENVIRON. 9: 81-91.
  • Greenway H., Munns R. 1980. Mechanism of salt tolerance in non-halophytes. ANN. REV. PLANT PHYSIOl. 31: 149-190.
  • Gunes A., Inal A., AlpaslanM. 1996. Effect of salinity on stomatal resistance, proline, and mineral composition of pepper. J. PLANT. NUTR. 19(2): 389-396.
  • Halil M., Zenoff A.M., Ponessa G., Moreno H., MassaE.D. 1998. Saline stress alters the temporal patterns of xylem differentiation and alternative oxidative expression in developing soybean roots. PLANT PHYSIOL. 117: 695-701.
  • Kaya C., Kirnak H., Higgs D. 2001a. Effects of supplementary potassium and phosphorus on physiological development and mineral nutrition of cucumber and pepper cultivars grown at high salinity (NaCl). J. PLANT. NUTR. 24(9): 1457-1471.
  • Kaya C., Higgs D., Kirnak H. 2001b. The effects of high salinity (NaCl) and supplementary phosphorus and potassium on physiology and nutrition development of spinach. BULG. J. PLANT. PHYSIOL. 27(3-4): 47-59.
  • Kaya C., Higgs D., Saltali K., Gezeral O. 2002. Response of strawberry grown at high salinity and alkalinity to supplementary potassium. J. PLANT. NUTR. 25(7): 1415-1427.
  • Kaya C., AK B.E., Higgs D. 2003. Response of salt-stressed strawberry plants to supplementary calcium nitrate and/or potassium nitrate. J. PLANT. NUTR. 26(3): 543-560.
  • Lutts S., Kinet J.M., Bouharmont J. 1995. Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. J. EXP. BOT. 46: 1843-1852.
  • Munns R., Termeat A. 1986. Whole- plant responses to salinity. AUST. J. PLANT. PHYSIOL. 13: 143-160.
  • Qadar A. 1998. Alleviation of sodicity stress on rice genotypes by phosphorus fertilization. PLANT AND SOIL 203: 269-277.
  • Rhoades J.D., Loveday J. 1990. Salinity in irrigated agriculture. In: Stewart B.A., Nielsen D.R. (eds), American Society of Civil Engineers, Irrigation of Agricultural Crops. American Society of Agronomists, Monograph 30: 1089-1142.
  • Saied A.S., Keutgan N., Noga G. 2003. Effects of NaCl stress on leaf growth, photosynthesis and ionic contents of strawberry Cvs 'Elsanta' and 'Korona'. ACTA. HORT. 609: 67-73.
  • Silva J.V., Lacerda C.F.D., Costa P.H.D.A., Filho J.E., Filho E.G., Prisco J.T. 2003. Physiological responses of NaCl stressed cowpea plants grown in nutrient solution supplemented with CaCl2. BRAZ. J. PLANT. PHYSIOL. 15(2): 99-105.
  • Sonneveld C., Kreij C. 1999. Response of cucumber (Cucumis sativus L.) to an unequal distribution of salt in the root environment. PLANT AND SOIL 209: 47-56.
  • Sonneveld C., Voogt W. 1990. Response of tomatoes (Lycopersicum escule- ntum) to an unequal distribution of salt in the root environment. PLANT AND SOIL 124: 251-256.
  • Sultana N., Ikeda T., Kashem M.A. 2001. Effect of foliar spray of nutrient solutions on photosynthesis, dry matter accumulation and yield in seawater-stressed rice. ENVIRON. EXP. BOT. 46: 129-140.
  • Turhan E., Eris A. 2007. Growth and stomatal behaviour of two strawberry cultivars under long-term salinity stress. TURK. J. AGRIC. FOR. 31: 55-61.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-b96eb4d3-c7e3-4c39-8c12-a27a70543c3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.