Warianty tytułu
Języki publikacji
Abstrakty
The results of molecular dynamics simulation of fully hydrated dimyristoylphosphatidylcholine (DMPC) bilayer membrane in the liquid-crystalline phase are presented. They show that the probability of a gauche conformation varies periodically along the chain with only a slight increase towards the end of the chain. However, the frequency of transition between conformations increases, due to a decrease in the lifetime of the trans conformation, along the chain. The average lifetimes for trans conformations are in the range of 1-2 x 10-10 s and for gauche conformations in the range of 4-7 x 10-11 s. The α-chain of the DMPC head group has mainly an extended conformation, due to predominantly trans conformation of α5 torsion. The rotational correlation time for the P-N vector is 3.7 ns. The C2-C1-011-P fragment of the DMPC head group (θ1, α1, α2 torsions) is rigid while the P-012-C11-C12 fragment ( α3, α4, α5 torsions) is flexible. The lateral diffusion coefficient for DMPC self-diffusion in the membrane is 2 x 10-7 cm2/s; the rate of transverse diffusion is the same. Large differences in the calculated rotational correlation times for the a-, β-, γ-chains and for the 021-Cl-vector indicate that in the liquid-crystalline bilayer each segment of the DMPC molecule exhibits its own rotational freedom, in addition to its internal flexibility resulting from rotational isomerism. The results obtained in these calculations, although in general agreement with some experimental data, shed new light on the dynamical behaviour of phosphatidylcholine molecules in the bilayer membrane in the liquid-crystalline phase.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.607-624,fig.
Twórcy
autor
- Jagiellonian University, al.A.Mickiewicza 3, 31-120 Crocow, Poland; E-mail: mpg@mol.uj.edu.pl
autor
Bibliografia
- 1. Casal, H.L. & McElhaney, R.N. (1990) Quantitative determination of hydrocarbon chain conformational order in bilavers of saturated phosphatidylcholines of various chain lengths by Fourier transform infrared spectroscopy. Biochemistry 29. 4523-5427.
- 2. Mendelsohn, R., Davies, M.A., Brauner, J.W., Schuster, H.F. & Dluhy, R.A. (1989) Quantitative determination of conformational disorder in the acyl chains of phospholipid bilayers by infrared spectroscopy. Biochemistry 28, 8934-8939.
- 3. Maroncelli, M., Qi, S.P., Strauss, H.L. & Snyder. R.G. (1982) Non polar con formers and the phase behavior of solids n-alkanes. J. Am. Chem. Soc•. 104, 6237-6247.
- 4. Wang, C.C. & Pecora, R. (1980) Time-correlation function for restricted rotational diffusion. J. Chem. Phys. 72. 5333-5336.
- 5. Devaux. P. & McConnell, H.M. (1972) Lateral diffusion in spin-labeled phosphatidylcholine multilayers. J. Am. Chem. Soc. 94, 4475- 4481.
- 6. Vaz, W.L.C., Clegg, R.M. & Hallmann, D. (1985) Translational diffusion of lipids in liquid crystalline phase phosphatidylcholine multibilaycrs. A comparison of experiment with theory. Biochemistry 24, 781-786.
- 7. Sackmann, E. (1995) Physical basis of self-organization and function of membranes: Physics of vesicles; in Structure and Dynamics of Membranes (Lipowsky, R. & Sackmann, E., eds.) pp. 213-304, Elsevier, Amsterdam.
- 8. Meier. P., Ohmer, E. & Kothe, G. (1986) Mul- tipulse dynamic nuclear magnetic resonance of phospholipid membranes. J. Chem. Phys. 85, 3598-3614.
- 9. Weisz, K., Grobner, G., Mayer, C., Stohrer, J. & Kothe, G. (1992) Deutcron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol membranes: Molecular properties and viscoelastic behavior. Biochemistry 31, 1100-1112.
- 10. Pearlman, D.A., Case, D.A., Caldwell, J.C., Seibcl, G.L., Singh, U.C., Weiner, P.K. & Koll- man, P.A. (1991) AMBER 4.0. University of California, San Francisco.
- 11. Vanderkooi, G. (1991) Multibilayer structure of dimyristoylphosphatidyl-choline dihydrate as determined by energy minimization. Biochemistry 30, 10760-10768.
- 12. Pasenkiewic/.-Gierula, M., Takaoka, Y.. Miy- agawa, H.. Kitamura, K. & Kusumi, A. (1997) Hydrogen bonding of water to phosphatidylcholine in the membrane as studied by a molecular dynamics simulation: Location, geometry, and lipid-lipid bridging via hydrogen- bonded water. J. Phys. Chem. (in press).
- 13. Jorgensen, W.L. & Tirado-Rives, J. (1988) The OPLS potential functions for proteins. Energy minimization for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110, 1657- 1666.
- 14. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, K. & Klein, M L. (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79. 926-935 (and references therein).
- 15. Ryckaert, J.P., Cicotti, G. & Berendsen, H.J.C. (1977) Numerical integration of the Cartesian equations of motion of a system with constraints: molecular dynamics of n-al- kanes. J. Comp. Phys. 22, 327-341.
- 16. Egberts. E., Marrik, S.-J. & Berendsen, H.J.C. (1994) Molecular dynamics simulation of a phospholipid membrane. Eur. Biophys. J. 22, 432-436.
- 17. Berendsen, H.J.C., Postma, J.P.M., van Gun- steren, W.F., DiNola, A. & Haak, J.R. (1984) Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684-3690.
- 18. Pearson, R.H. & Pascher, I. (1979) The molecular structure of lecithin dihydrate. Nature (London) 281,499-501.
- 19. Pink, D.A., Green, T.J. & Chapman, D. (1980) Raman scattering in bilayers of saturated phosphatidylcholines. Experiment and theory. Biochemistry 19, 349-356.
- 20. Moser, M., Marsh, D., Meier, P., Wassmer, K.-H. & Kothe, G. (1989) Chain configuration and flexibility gradient in phospholipid membranes. Biophys. J. 55. 111-123.
- 21. Hubbell, W.L. & McConnell, Il.M. (1971) Molecular motion in spin-labeled phospholipids and membranes. J. Am. Chem. Soc. 93, 314-326.
- 22. Meier, P., Blume, A., Ohmes, E., Neugebauer. F.A. & Kothe, G. (1982) Structure and dynamics of phospholipid membranes: An electron spin resonance study employing biradical probes. Biochemistry 21, 526-534.
- 23. Carlson, J.M. & Sethna, J.P. (1987) Theory of the ripple phase in hydrated phospholipid bilayers. Phys. Rev. A 36, 3359-3374.
- 24. Pastor, R.W., Venable, R.M. & Karplus, M. (1988) Brownian dynamics simulation of a lipid chain in a membrane bilayer. J. Chem. Phys. 89, 1112-1127.
- 25. Hauser, H., Pascher, I., Pearson, R.H. & Sun- dell. S. (1981) Preferred conformation and molecular packing of phosphatidylethanol- amine and phosphatidylcholine. Biochim. Biophys. Acta 650, 21-51.
- 26. Buldt, G. & Wohlgemuth, R. (1981) The headgroup conformation of phospholipids in membranes. J. Membr. Biol. 58, 81-100.
- 27. Seelig, J., Gaily, H.-U. & Wohlgemuth, R. (1977) Orientation and flexibility of the choline head group in phosphatidylcholine bilayers. Biochim. Biophys. Acta 467, 109-119.
- 28. Allegrini, P.R., Scharrenbui^, G, Haas, G.H. & Seelig, J. (1983) 2H- and 31P-NMR studies of bilayers composed of 1-acyllysophospha- tidylcholine and fatty acids. Biochim. Biophys. Acta 731, 448-455.
- 29. Seelig, J. & Gaily, H.U. (1976) Investigation of phosphatidylethanolamine bilayers by deuterium and phosphorus-31 nuclear magnetic resonance. Biochemistry 15, 5199--5204.
- 30. Robinson, A.J., Richards, W.G., Thomas, P.J. & Hann, M.M. (1994) Head group and chain behavior in biological membranes: A molecular dynamics computer simulation. Biophys. J. 67, 2345-2354.
- 31. Yeagle, P L., Hutton, W.C.. Huang. C-h. & Martin, R.B. (1975) Headgroup conformation and lipid-cholesterol association in phospha-tidylcholine vesicles: A PI HI nuclear Over- hauser effect study. Proc. Nat. Acad. Sci. U.S.A. 72, 3477-3481.
- 32. Yeagle, P.L., Hutton, W.C., Huang, C-h. & Martin. R.B.(1976) Structure in the polar head group region of phospholipid bilayers: AP { H| nuclear Overhauser effect study. Biochemistry 15, 2121-2124. 1978) Griffin, R.G., Powers, L. & Pershan, P.S. (1978) Head-group conformation in phospholipids: A phosphorus-31 nuclear magnetic- resonance study of oriented monodomain di- palmitoyl-phosphatidylcholine bilayers. Biochemistry 17, 2718-2722.
- 34. Hauser, H., Guyer, W., Skrabal, P. & Sundell, S. (1980) Polar group conformation of phosphatidylcholine. Effect of solvent and aggregation. Biochemistry 19, 366-373.
- 35. Akutsu, H. (1981) Direct determination by Raman scattering of the conformation of the choline group in phospholipid bilayers. Biochemistry 20, 7359-7366.
- 36. Nagle, J.F. (1976) Theory of lipid monolayer and bilayer phase transitions: Effect of headgroup interactions. J. Membr. Biol. 27, 233-250.
- 37. Yeagle, P.L., Ilutton, W.C., Huang, C-h. & Martin, R.B. (1977) Phospholipid head-group conformations; Intermolecular interactions and cholesterol effects. Biochemistry 16. 4344 -4349.
- 38. Shepherd, J.C. & Buldt, G. (1978) Zwitter- ionic dipoles as dielectric probe for investigating head group mobility in phospholipid membranes. Biochim. Biophys. Acta 514, 83-94.
- 39. Schindler. H. & Seelig, J. (1973) EPR spectra of spin labels in lipid bilayers. -J. Chem. Phys. 59, 1841-1850.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-b739221d-aece-45b5-ab46-b0089b9cb6c9