Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2004 | 53 | 4 |
Tytuł artykułu

Effect of age on the fatty acid composition of the Bacillus subtilis PO270 isolated from wheat rhizosphere

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The changes of the composition of growing medium and the fatty acid composition of Bacillus subtilis PO270, a bacterium isolated from the wheat rhizosphere, was evaluated during different phases of growth. During growth alkalinity reaction of medium was observed and in late stationary phase of growth the release of proteins and phenolic acids from cells was observed. Twenty six fatty acids were detected. The most prominent fatty acids found in bacterial cells were 15:0 a, 15:0 i, 17:0 a and 17:0 i. Depending of a phase of bacterial growth, their contents varied from 86.5 to 88.9% of total fatty acids. The remaining fatty acids identified, including regular saturated and monounsaturated as well as iso- and anteiso-branched, 2- and 3-hydroxylated, cyclopropane and odd-numbered derivatives, were present in minor amounts. We have demonstrated that the fatty acid composition of this bacterium changes greatly in different growth phases. These structural changes represent re-arrangement of membranes, which keeps the bacterial cell fit during growth and counteracts the effects of the changing environment.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
53
Numer
4
Opis fizyczny
p.267-272,fig.,ref.
Twórcy
autor
  • Agricultural University, Wroclaw, Poland
autor
autor
autor
Bibliografia
  • Altabe S.G., P. Aquilar, G.M. Caballero and D. de Mendoza. 2003. The Bacillus subtilis acyl lipid desaturase is a delta-5 desaturase. J. Bacteriol. 185: 3228-3231.
  • Bischop D.G., L. Rutberg and B. Samuelson. 1967. The chemical composition of the cytoplasmic membrane of Bacillus subtilis. Eur. J. Biochem. 2: 448-453.
  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
  • Claus H. 2003. Laccases and their occurrence in prokaryotes. Arch. Microbiol. 179: 145-150.
  • Clejan S., T.A. Krulwich, K.R. Mondrus and D. Seto-Young. 1986. Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus sp. J. Bacteriol. 168: 334-340.
  • Cronan J.E. and E.P. Felmann. 1975. Physical properties of mebrane lipids: biological relevance and regulation. Bacteriol. Rev. 39: 232-256.
  • Foldes T., I. Banhegyi, Z. Herpai, L. Varga and J. Szigeti. 2000. Isolation of Bacillus strains from the rhizosphere of cereals and in vitro screening for antagonism against phytopathogenic, food-borne pathogenic and spoilage micro-organisms. J. App. Microbiol. 89: 840-846.
  • Gohar M., O.A. Okstad, N. Gilois, V. Sanchis, A.B. Kolsto and D. Lereclus. 2002. Two-dimensional electrophoresis analysis of the extracellular proteome of Bacillus cereus reveals the importance of the PlcR regulon. Proteomics 2: 784-791.
  • Holmgren E. 1978. A mutant of Bacillus subtilis with temperature-sensitive synthesis of fatty acids. FEMS Microbiol. Lett. 3: 327-329.
  • Lievens K.H., R. van Rijsbergen, F.R. Leyns, B.J. Lambert, P. Tenning, J. Swings and H.J.-P. Joos. 1989. Dominant rhizosphere bacteria as a source for antifungal agents. Pest. Sci. 27: 141-154.
  • Kaneda T. 1972. Positional distribution of fatty acids in phospholipids from Bacillus subtilis. Biochim. Biophys. Acta 270: 32-39.
  • Kaneda T. 1991. Iso- and anteiso-fatty acids in bacteria: biosynthesis, function and taxonomic significance. Microbiol. Rev. 55: 288-302.
  • Krygier K., F. Sosulski and L. Hogge. 1982. Free, estrificated, and insoluble bound phenolic acids. I. Estrification and purification procedure. J. Agric. Food Chem. 30: 330-334.
  • Lopez C.S., H. Heras, H. Garda, S. Ruzal, C. Sanchez-Rivas and E. Rivas. 2000. Biochemical and biophysical studies of Bacillus subtilis envelopes under hyperosmotic stress. Int. J. Food Microbiol. 55: 137-144.
  • Macrae A., C.M.M. Lucon, D.L. Rimmer and A.G. O'Donnel. 2001. Samplimg DNA from rhizosphere of Brassica napus to investigate rhizobacterial community structure. Plant and Soil 233: 223-230.
  • Nelson N. 1944. A photometric adaptation of the Somogyi method for determination of glucose. J. Biol. Chem. 153: 375-380.
  • Reddy M.S. and J.E. Rahe. 1989. Bacillus subtilis B-2 and selected onion rhizobacteria in onion seedling rhizospheres: Effects on seedling growth and indigenous rhizosphere microflora. Soil Biol. Bioch. 21: 379-383.
  • Russell N.J. and N. Fukunaga. 1990. A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. Fed. Eur. Microbiol. Rev. 75: 171-182.
  • Sakamoto T. and N. Murata. 2002. Regulation of the desaturation of fatty acids and its role in tolerance to cold and salt stress. Curr. Opin. Microbiol. 5: 208-210.
  • Serrano M., R. Zilhao, E. Ricea, A.J. Ozin, CP. Moran and A.O. Henriques. 1999. A Bacillus subtilis secreted protein with a role in endospore coat assembly and function. J. Bacteriol. 181: 3632-3643.
  • Suutari M. and S. Laakso. Unsaturated and branched chain-fatty acids in temperature adaptation of Bacillus subtilis and Bacillus megaterium. Biochim. Biophys. Acta 1126: 119-124.
  • Svobodova J., J. Julak, J. Pilar and P. Svoboda. 1988. Membrane fluidity in Bacillus subtilis. Validity of homeoviscous adaptation. Folia Microbiol. (Praha) 33: 170-177.
  • Thompson LP., M.J. Bailey, R.J. Ellis and K.J. Purdy. 1993. Subgrouping of bacterial population by cellular fatty acid composition. FEMS Microbiol. Ecol. 102: 75-84.
  • Tranter R.L. 2000. Design and Analysis in Chemical Research. CRC Press, Durham, UK.
  • van de Vossenberg J.L., A.J. Driessen, M.S. da Costa and W.N. Konings. 1999. Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim. Biophys. Acta 1419: 97-104.
  • Ward J.H. 1963. Hierarchical grouping to optimise an objective function. J. Amer. Statist. Assoc. 58: 236-244.
  • Weber M.H., W. Klein, L. Muller, U.M. Niess and M.A. Marahiel. 2001. Role of the Bacillus subtilis fatty acid desaturase in membrane adaptation during cold shock. Mol. Microbiol. 39: 1321-1329.
  • Wilson R.A, P.K Chang, A Dobrzyn, J.M. Ntambi, R. Żarnowski and N.P. Keller. 2004. Two Delta9-stearic acid desaturases are required for Aspergillus nidulans growth and development. Fungal. Genet. Biol. 41: 501-509.
  • Yumoto I., K. Yamazaki, M. Hishinuma, Y. Nodasaka, N. Inoue and K. Kawasaki. 2000. Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid composition and cell-surface aspects depending on culture pH. Extremophiles 4: 285-290.
  • Żarnowski R. 2002. PhD thesis. Agricultural University, Wroclaw.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-b713c0a2-55d8-470a-a6cc-c029fc464d8a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.