Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2010 | 66 | 05 | 316-322
Tytuł artykułu

Production of transgenic pigs expressing human alpha 1,2-fucosyltransferase to avoid humoral xenograft rejection

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of animals as a source of organs and tissues for xenotransplantation may overcome the growing shortage of human organ donors. However, the presence of xenoreactive antibodies in humans, directed against the swine Gal antigen present on the surface of xenograft donor cells, leads to the complement activation and an immediate xenograft rejection as a consequence of hyperacute reaction. In order to prevent a hyperacute rejection, it is possible to alter the swine genome with human genes modifying the set of the donor’s cell surface proteins. The aim of this study was to prepare a pCMVFut genetic construct and then introduce it into the swine genome in order to obtain transgenic pigs expressing human α1,2-fucosyltransferase and thereby avoid a humoral xenograft rejection. The pCMVFut gene construct containing the human gene encoding α1,2-fucosyltransferase enzyme under the human cytomegalovirus immediate early promoter was introduced by microinjection into a male pronucleus of a fertilized porcine oocyte. The screening procedure involved isolating genomic DNA from microsections of pigs’ ears, the amplification of two PCR fragments and the entire sequencing of positive samples. The mapping of the transgene was performed by fluorescence in situ hybridisation (FISH) and transgene expression, while its impact on the reduction of the Gal epitope level on the surface of pig cells was assessed by flow cytometry of primary cultured skin fibroblasts. The influence of the human complement was measured by testing the sensitivity of nontransgenic and transgenic cells to complement-mediated cytotoxicity upon exposure to human serum. As a result of this experiment, the founder male pig was obtained with the transgene mapping to chromosome 14q28. An RT-PCR analysis revealed the expression of the HT gene in different tissues of transgenic pigs. A flow cytometry analysis revealed a reduction in the level of epitop Gal on the cell surface of skin fibroblasts isolated from transgenic pigs. The complement-mediated cytotoxicity assay showed increased viability of transgenic cells in comparison with nontransgenic ones, which confirmed the protective influence of HT expression. In this study we demonstrated that the constitutive transgenic expression of human H-transferase (α1,2-fucosyltransferase) can decrease the amount of Galα1,3Gal (Gal epitope) on the surface of pig cells, which is consistent with the results of other researchers. The expression of α1,2-fucosyltransferase modified the cell surface carbohydrate phenotype of transgenic pig cells, resulting in the expression of the universally tolerated 0 blood group antigen (H antigen) and a subsequent reduction in the expression of Gal epitope, as evaluated by flow cytometry analysis. Apart from the principal data, the flow cytometry analysis revealed no significant differences between the Gal epitope level achieved by CMVFUT heterozygous boar founder TG 1154 and transgene homozygous pig 433 from the F2 generation. The flow cytometry results were confirmed by the cytotoxicity assay. We found no statistical difference in the survival rate between transgenic homozygous and heterozygous cells under the influence of 50% human serum with an active complement system. Both homozygous and heterozygous cells had the same level of lysis protection.
Wydawca
-
Rocznik
Tom
66
Numer
05
Strony
316-322
Opis fizyczny
p.316-322,fig.,ref.
Twórcy
autor
  • Polish Academy of Sciences, Strzeszynska 32, 60-479 Poznan, Poland
autor
autor
autor
autor
autor
autor
autor
autor
autor
autor
Bibliografia
  • 1. Bondioli K., Ramsoondar J., Williams B., Costa C., Fodor W.: Cloned pigs generated from cultured skin fibroblasts derived from a H-transferase transgenic boar. Mol. Reprod. Dev. 2001, 60, 189-195.
  • 2. Buhler L., Friedman T., Iacomini J., Cooper D. K.: Xenotransplantation - state of the art - update 1999. Front. Biosci. 1999, 4, D416-432.
  • 3. Costa C., Zhao L., Burton W. V., Bondioli K. R., Williams B. L., Hoagland T. A., Ditullio P. A., Ebert K. M., Fodor W. L.: Expression of the human alpha1,2-fucosyltransferase in transgenic pigs modifies the cell surface carbohydrate phenotype and confers resistance to human serum-mediated cytolysis. FASEB J. 1999, 13, 1762-1773.
  • 4. Ekser B., Rigotti P., Gridelli B., Cooper D. K.: Xenotransplantation of solid organs in the pig-to-primate model. Transpl. Immunol. 2009, 21, 87-92.
  • 5. Galili U., Shohet S. B., Kobrin E., Stults C. L., Macher B. A.: Man, apes, and Old World monkeys differ from other mammals in the expression of alpha-galactosyl epitopes on nucleated cells. J. Biol. Chem. 1988, 263, 17755-17762.
  • 6. Galili U., Swanson K.: Gene sequences suggest inactivation of alpha-1,3-galactosyltransferase in catarrhines after the divergence of apes from monkeys. Proc. Natl. Acad. Sci. USA 1991, 88, 7401-7404.
  • 7. Gustavsson I.: Standard karyotype of the domestic pig. Committee for the Standardized Karyotype of the Domestic Pig. Hereditas. 1988, 109, 151-157.
  • 8. Kelishadi S. S., Zhang T., Stoddard T., Azimzadeh A. M., Welty E., Avon C. J.: Addition of HDAF to the Gal-KO background improved survival and function of pig kidneys in baboons. Am. J. Transplant. 2008, 8, 205.
  • 9. Lee K. F., Salvaris E. J., Roussel J. C., Robson S. C., d'Apice A. J., Cowan P. J.: Recombinant pig TFPI efficiently regulates human tissue factor pathways. Xenotransplantation 2008, 15, 191-197.
  • 10. Lin C. C., Cooper D. K., Dorling A.: Coagulation dysregulation as a barrier to xenotransplantation in the primate. Transpl. Immunol. 2009, 21, 75-80.
  • 11. Morita H., Sugiura K., Inaba M., Jin T., Ishikawa J., Lian Z., Adachi Y., Sogo S., Yamanishi K., Taki H., Adachi M., Noumi T., Kamiyama Y., Good R. A., Ikehara S.: A strategy for organ allografts without using immunosuppressants or irradiation. Proc. Natl. Acad. Sci. USA 1998, 95, 6947-6952.
  • 12. Pączek A., Foroncewicz B.: Tolerancja immunologiczna - wiodącym problemem transplantologii XXI wieku. Post. Nauk Med. 2003, 16, 40-44.
  • 13. Sandrin M. S., Fodor W. L., Mouhtouris E., Osman N., Cohney S., Rollins S. A., Guilmette E. R., Setter E., Squinto S. P., McKenzie I. F.: Enzymatic remodelling of the carbohydrate surface of a xenogenic cell substantially reduces human antibody binding and complement-mediated cytolysis. Nat. Med. 1995, 1, 1261-1267.
  • 14. Sandrin M. S., McKenzie I. F.: Gal alpha (1,3)Gal, the major xenoantigen(s) recognised in pigs by human natural antibodies. Immunol. Rev. 1994, 141, 169-190.
  • 15. Sharma A., Okabe J., Birch P., McClellan S. B., Martin M. J., Platt J. L., Logan J. S.: Reduction in the level of Gal(alpha1,3)Gal in transgenic mice and pigs by the expression of an alpha(1,2)fucosyltransferase. Proc. Natl. Acad. Sci. USA 1996, 93, 7190-7195.
  • 16. Varki A.: Factors controlling the glycosylation potential of the Golgi apparatus. Trends Cell. Biol. 1998, 8, 34-40.
  • 17. Xia G., Goebels J., Rutgeerts O., Vandeputte M., Waer M.: Transplantation tolerance and autoimmunity after xenogeneic thymus transplantation. J. Immunol. 2001, 166, 1843-1854.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-b3d7c799-bf73-417c-902d-2d927ff74699
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.