Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
The prevalence of asthma has increased worldwide. The reasons for this rise remain unclear. Oxidative stress plays an important role in the pathogenesis of asthma. Glutathione (GSH) is the major representative of the class of nonprotein thiols and plays a pivotal role in a variety of enzymatic and nonenzymatic reactions that protect tissues against oxidative stress. In antioxidative reactions, GSH is converted into its oxidized form, glutathione disulfide (GSSG) that in its turn is enzymatically reduced into GSH to maintain a physiological redox balance. We used a guinea pig model of asthma to assess whether the early asthmatic reaction is associated with decreased lung levels of glutathione, and whether decreased glutathione is implicated in the increased airway smooth muscle reactivity that is associated with exposure of the lungs to allergen. Lung glutathione levels were decreased immediately after the onset of the early asthmatic reaction in vivo and associated with the release of 8-iso-PGF2alpha, an indicator for oxidative stress. Glutathione ethylester, a glutathione precursor, blunted the airway obstruction during an early asthmatic reaction in a perfusion model and glutathione depletion rendered the airways hyperreactive. Glutathione ethyl ester in the buffer prevented this hyperreactivity. These results indicate that glutathione can modulate the early asthmatic reaction as well as the airway hyperresponsiveness.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
67-72
Opis fizyczny
p.67-72,fig.,ref.
Twórcy
autor
- Utrecht University, 3508 TB Utrecht, The Netherlands
autor
autor
autor
autor
autor
Bibliografia
- Fitzpatrick AM, Teague WG, Holguin F, et al. Severe Asthma Research Program. Airway glutathione homeostasis is altered in children with severe asthma: evidence for oxidant stress. J Allergy Clin Immunol 2009; 123(1):146-152.
- Hoshino T, Okamoto M, Takei S, et al. Redox-regulated mechanisms in asthma. Antioxid Redox Signal 2008; 10(4): 769-783.
- Ricciardolo FL, Sterk PJ, Gaston B, et al. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84(3): 731-765.
- Dut R, Dizdar EA, Birben E, et al. Oxidative stress and its determinants in the airways of children with asthma. Allergy 2008; 63(12): 1605-1609.
- Bede O, Nagy D, Suranyi A, Horvath I, Szlavik M, Gyurkovits K. Effects of magnesium supplementation on the glutathione redox system in atopic asthmatic children. Inflamm Res 2008; 57(6): 279-286.
- Allen J. Inhaled glutathione for the prevention of air pollution-related health effects: a brief review. Altern Ther Health Med 2008; 14(3): 42-44.
- Riedl MA. The effect of air pollution on asthma and allergy. Curr Allergy Asthma Rep 2008; 8(2): 139-146.
- Rahman I., Li XY, Donaldson K, MacNee W. Glutathione homeostasis in alveolar epithelial cells in vitro and lung in vivo under oxidative stress. Am J Physiol 1995; 269 (3 Pt 1): L285-L292.
- Meister A., Anderson ME. Glutathione. Annu Rev Biochem 1983; 52: 711-760.
- Cantin AM, North SL, Hubbard RC, Crystal RG. Normal alveolar epithelial lining fluid contains high levels of glutathione. J Appl Physiol 1987; 63: 152-157.
- Ikegami K, Lalonde C, Young YK, Picard L, Demling R. Comparison of plasma reduced glutathione and oxidized glutathione with lung and liver tissue oxidant and antioxidant activity during acute inflammation. Shock 1994; 1(4): 307-312.
- Koike Y, Hisada T, Utsugi M, et al. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice. Am J Respir Cell Mol Biol 2007; 37(3): 322-329.
- Cross CE, van der Vliet A, O’Neill CA, Louie S, Halliwell B. Oxidants, antioxidants, and respiratory tract lining fluids. Environ Health Perspect 1994; 102: 185-195.
- Smith LJ, Houston H, Anderson J. Increased levels of glutathione in bronchoalveolar lavage fluid from patients with asthma. Am Rev Respir Dis 1993; 147: 1461-1464.
- Linden M, Hakansson L, Ohlsson K, et al. Glutathione in bronchoalveolar lavage fluid from smokers is related to humoral markers of inflammatory cell activity. Inflammation 1989; 13: 651-658.
- Casoni GL, Chitano P, Pinamonti S, et al. Reducing agents inhibit the contractile response of isolated guinea-pig main bronchi. Clin Exp Allergy 2003; 33(7): 999-1004.
- Zhou D, Mayberg MR, London S, Gajdusek C. Reduction of intracellular glutathione levels produces sustained arterial narrowing. Neurosurgery 1996; 39: 991-997.
- Adachi T, Cohen RA. Decreased aortic glutathione levels may contribute to impaired nitric oxide-induced relaxation in hypercholesterolaemia. Br J Pharmacol 2000; 129: 1014-1020.
- Colpaert EE, Lefebvre RA. Influence of bilirubin and other antioxidants on nitrergic relaxation in the pig gastric fundus. Br J Pharmacol 2000; 129(6):1201-1211.
- Kloek J, van Ark I, Bloksma N, De Clerck F, Nijkamp FP, Folkerts G. Glutathione and other low-molecular-weight thiols relax guinea pig trachea ex vivo: interactions with nitric oxide? Am J Physiol Lung Cell Mol Physiol 2002; 283(2): L403-L408.
- Meister A. Glutathione deficiency produced by inhibition of its synthesis, and its reversal; applications in research and therapy. Pharmacol Ther 1991; 51: 155-194.
- Lilly CM, Martins MA, Drazen JM. Peptidase modulation of vasoactive intestinal peptide pulmonary relaxation in tracheal superfused guinea pig lungs. J Clin Invest 1993; 91: 235-243.
- Vandeputte C, Guizon I, Genestie-Denis I, Vannier B, Lorenzon G. A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biol Toxicol 1994; 10: 415-421.
- Akerboom TP, Sies H. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 1981; 77: 373-382.
- Gushchin IS, Petyaev IM, Tsinkalovsky OR. Kinetics of oxygen metabolism indices in the course of histamine secretion from rat mast cells. Agents Actions 1990; 30: 85-88.
- Beaven MA. Our perception of the mast cell from Paul Ehrlich to now. Eur J Immunol 2009; 39(1): 11-25.
- Roberts LJ, Morrow JD. Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo. Free Radic Biol Med 2000; 28: 505-513.
- Bernareggi M, Rossoni G, Berti F. Bronchopulmonary effects of 8-epi-PGF2A in anaesthetised guinea pigs. Pharmacol Res 1998; 37: 75-80.
- Wood LG, Fitzgerald DA, Gibson PG, Cooper D, Garg HL. Lipid peroxidation as determined by plasma isoprostanes is related to disease severity in mild asthma. Lipids 2000; 35: 967-974.
- Montuschi P, Corradi M, Ciabattoni G, Hightingale J, Kharitonov SA, Barnes PJ. Increased 8-isoprostane, a marker of oxidative stress, in exhaled condensate of asthma patients. Am J Respir Crit Care Med 1999; 160: 216-220.
- Jansen A, Drazen J, Osborne JA, Brown R, Loscalzo J, Stamler JS. The relaxant properties in guinea pig airways of s-nitrosothiols. J Pharmacol Exp Ther 1992; 261: 154-160.
- Eastmond NC, Banks EM, Coleman JW. Nitric oxide inhibits IgE-mediated degranulation of mast cells and is the principal intermediate in IFN-gamma-induced suppression of exocytosis. J Immunol 1997; 159: 1444-1450.
- Nejad HH, Beers KW, Bottje WG. Effect of glutathione manipulation on prostaglandin synthesis in renal medullary homogenates. Int J Biochem 1991; 23: 1035-1041.
- Rahman I, Bel A, Mulier B, Donaldson K, Mac Nee W. Differential regulation of glutathione by oxidants and dexamethasone in alveolar epithelial cells. Am J Physiol 1998; 275(1 Pt 1): L80-L86.
- Jesenak M, Rennerova Z, Babusikova E, et al. Food allergens and respiratory symptoms. J Physiol Pharmacol 2008; 59(Suppl 6): 311-320.
- Gorska K, Krenke R, Korczynski P, et al. Eosinophilic airway inflammation in chronic obstructive pulmonary disease and asthma. J Physiol Pharmacol 2008; 59(Suppl 6): 261-270.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-aeb62fdb-4d75-481f-a153-3f58397756b2