Warianty tytułu
Języki publikacji
Abstrakty
This paper describes the application of artificial neural networks (ANNs) for the time series modeling of total phosphorous concentrations in the Odra River. Data from the monitoring site Police in the lower part of the Odra were used for training, validating and testing the models. Two models are proposed to prove the satisfactory forecast of phosphorus concentrations: a simpler one with a single input variable and a more complex one with 14 input variables. Both ANN models show a high ability to predict from the new data set. On the basis of sensitivity analysis the relationships between phosphorus concentrations and other water quality variables were established.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
363-368
Opis fizyczny
p.363-368,fig.,ref.
Bibliografia
- 1. MUSCUTT A.D., WITHERS P. J.A. The phosphorus content of rivers in England and Wales. Water Res. 30 (5), 1258, 1996
- 2. SANSCHI P. H. Seasonality in nutrient concentrations in Galveston Bay. Marine Environ. Res. 40 (4), 337, 1995
- 3. LARSEN S.E., KRONVANG B., WINDOLF J., SVENDSEN L.M. Trends in diffuse nutrient concentrations and loading in Denmark. Wat. Sci. Tech. 39 (12), 197, 1999
- 4. JARVIE H. P., WHITTON B.A., NEAL C. Nitrogen and phosphorus in coast British rivers. Sci. Total Environ. 210/211, 79, 1998
- 5. LIQIANG XIE, PING XIE. Long-term (19956-1999) dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms. Water Res. 36, 343, 2002
- 6. HUANG W., FOO S. Neural network modeling of salinity variation in Apalachicola River. Water Res. 36, 356, 2002
- 7. SCARDI. M., HARDING L. W. JR. Developing an empirical model of phytoplankton primary production: a neural network study. Ecol. Model. 120, 213, 1999
- 8. SCARDI. M. Advances in neural network modeling of phytoplankton primary production. Ecol. Model. 146, 33, 2001
- 9. KWANG–SEUK JEONG, GEA-JAE JOO, HYUN-WOO KIM, KYONG HA, RECKNAGEL F. Prediction and elucidation of phytoplankton dynamics in the Nakdong River (Korea) by means of a recurrent artificial neural network. Ecol. Model. 146, 115, 2001
- 10. WILSON H., RECKNAGEL F. Towards a generic artificial neural network model for dynamic predictions of algal abundance in freshwater lakes. Ecol. Model. 146, 69, 2001
- 11. KARUL C., SOYUPAK S., CILESIZ A. F., AKBAY N., GERMEN E. Case studies on the use of neural network in eutrophication modeling. Ecol. Model. 134, 145, 2000
- 12. WALTER M., RECKNAGEL F., CARPENTER C., BORMANS M. Predicting eutrophication effect in the Burrinjuck Reservoir (Australia) by means of the deterministic model SALMO and the reccuren neural network model ANNA. Ecol. Model. 146, 97, 2001
- 13. JAN-TAI KUO, MING-HAN HSIEH, WU-SENG LUNG, NIAN SHE. Using artificial neural network for reservoir eutrophication prediction. Ecol. Model. 200, 171, 2007
- 14. QING ZHANG, STANLEY S. J. Forecasting raw- water quality parameters for the North Saskatchewan River by network modeling. Water Res. 31 (5) 2340, 1997
- 15. Moatar F., Fessant F., Poirel A. pH modelling by neural networks. Application of control and validation data series in the Middle Loire River. Ecol. Model. 120, 141, 1999
- 16. DUCH W., KORBICZ J., RUTKOWSKI L., TADEUSIEWICZ R. Biocybernetics and biomedical engineering. Vol. 6. Neural networks. Akademicka Oficyna Wydawnicza EXIT, Warszawa 2000. [In Polish]
- 17. WITKOWSKA D. Artificial neural networks in economic analysis. Wydawca „Menadżer”, Łódź, 2000. [In Polish]
- 18. RABUNAL, JUAN, R.(Editor). Artifical Neural Networks in Real-Life Applications. Hershey, PA, USA: Idea Group Publishing, 2005
- 19. Berthouex Mac P., Brown L.C. Statistics for Environmental Engineers CRC. Press LLC, 2002
- 20. Electronic Statistics Textbook. StatSoft. http://www.statsoft. com/textbook/stathome.html
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-abd7635e-f950-46e5-a920-fa0906bfc945