Warianty tytułu
Biodegradacja deltametryny przez bakterie planktonowe i bentosowe Jeziora Chelmzynskiego
Języki publikacji
Abstrakty
This study examined biodegradation of the insecticide deltamethrin (1 µg dm⁻³) by homogenous cultures of planktonic (n = 25) and benthic (n = 25) bacteria as well as by heterogenous cultures (n = 1) containing a mixture of 25 bacterial strains. The bacteria were collected from subsurface water layer (25 cm below the surface) and a surface layer of bottom sediments (down to 10–15 cm) of eutrophic lake Chełmżyńskie. Results indicate that planktonic bacteria were characterized by higher average ability to biodegrade deltamethrin than benthic bacteria (p < 0.05). After 15-day incubation, bacteria isolated from subsurface water reduced the initial concentration of deltamethrin by 69%, while the average effectiveness of benthic bacteria equaled 23%. The level of deltamethrin biodegradation in mixed cultures of benthic and planktonic bacteria after 5, 10, and 15 days of incubation was higher than that in homogenous cultures. It was demonstrated that microorganisms from the Sphingomonas paucimobilis species and the Moraxella genus, among planktonic bacteria, as well as Burkholderia cepacia and Bacillus mycoides species, among benthic bacteria, were the most effective in reducing the concentration of this insecticide.
Przeprowadzono badania biodegradacji insektycydu deltametryny (1 µg dm⁻³) przez homogenne hodowle szczepów bakterii planktonowych (n = 25) i bentosowych (n = 25), a także przez hodowle heterogenne (n = 1), zawierające mieszaninę 25 szczepów, wyizolowane z wody podpowierzchniowej (z głębokości 25 cm) oraz z powierzchniowej warstwy osadów dennych (do głębokości 10–15 cm) eutroficznego Jeziora Chełmżyńskiego. Z przeprowadzonych badań wynika, iż bakterie planktonowe charakteryzowały się średnio większą zdolnością do biodegradacji deltametryny niż bakterie bentosowe (p < 0,05). Bakterie wyizolowane z wody podpowierzchniowej rozkładały deltametrynę, redukując 69% stężenia początkowego insektycydu po 15 dniach inkubacji, natomiast bakterie bentosowe rozkłady pestycyd ze skutecznością wynoszącą 23%. Wartość biodegradacji deltametryny w mieszanych hodowlach bakterii planktonowych oraz bentosowych po 5, 10 i 15 dniach inkubacji była większa od średniej wartości biodegradacji tego związku w hodowlach jednorodnych. Wykazano, iż najskuteczniej redukowały zastosowane stężenie deltametryny bakterie planktonowe należące do gatunku Sphingomonas paucimobilis i bakterie z rodzaju Moraxella, natomiast wśród bakterii bentosowych – bakterie z gatunku Burkholderia cepacia i Bacillus mycoides.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
801-815
Opis fizyczny
p.801-815,fig.,ref.
Twórcy
autor
- Nicolai Copernicus University in Torun, Gagarina 9, 87-100 Torun, Poland
autor
autor
Bibliografia
- BHUSHAN B., CHAUHAN A., SAMANTA S.K., JAIN R.K. 2000. Kinetics of biodegradation of p-nitrophenol by different bacteria. Bioch. Biophis. Res. Communic., 274: 626–632.
- CHAPMAN R.A., TU, C.M., HARRIS C.R., COLE C. 1981. Persistence of five pyrethroid insecticides in sterile and natural, mineral and organic soil. Bull. Environ. Contam. Toxicol., 26: 513–519.
- CHODYNIECKI A. 1968. Antibiosis and symbiosis among freshwater bacteria, Szczecin.
- DAUBNER I. 1967. Water microbiology. Slov. Akad. Vied., Bratislava.
- DAUBRAS D.L., DANGANAN C.E., HÜBNER A., YE R.W., HENDRICKSON W., CHAKRABARTY A.M. 1996. Biodegradation of 2,4,5-trichlorophenoxyacetoc acid by Burkholderia cepacia strain AC1100: evolutionary insight,. Gene, 179: 1–8.
- DEMOUTE J.P. 2006. A brief review of the environmental fate and metabolism of pyrethroids. Pesticide Science, 27: 375–385.
- FERRER E.B., STAPERT E.M., SOKOLSKI W.T. 1963. A medium for improved recovery of bacteria from water. Can. J. Microbiol., 9: 420–427.
- FISHER H., WANNER S.C., PUSCH M. 2002. Bacterial abundance and production in river sediments as related to the biochemical composition of particulate organic matter (POM). Biogeochem., 61: 37–44.
- GIANFREDA L., RAO M.A. 2004. Potential of extracellular enzymes in remediation of polluted soils: a review. Enzyme Microb. Technol., 35: 339–354.
- GRANT R.J., DANIELL T.J., BETTS W.B. 2002. Isolation and identification of synthetic pyrethroiddegrading bacteria. J. Appl Microbiol., 92: 534–540.
- HAGLUND A.L., LANTZ P., TÖRNBLOM E., TRANVIK L. 2003. Depth distribution of active bacteria and bacterial activity in lake sediment. FEMS Microb. Ecol., 46: 31–43.
- JUHASZ A.L., BRITZ M.L., STANLEY G.A. 1997. Degradation of benso(a)pyrene, dibenz(a,h)anthracene and coronene by Burkholderia cepacia. Wat. Sci. Tech., 36: 45–51.
- KALWASIŃSKA A., DONDERSKI W. 2005. Benthic bacteria of Chełmżyńskie Lake (Poland). Polish J. Environ. Stud., 14: 761–766.
- KHAN S.U., BEHKI R.M., TAPPING R.I., AKHTAR M.H. 1988. Deltamethrin residues in an organic soil under laboratory conditions and its degradation by a bacterial strain. J. Agric. Food Chem., 36: 636–638.
- KIDD H., JAMES D.R. 1991. The Agrochemicals Handbook. Third Edition. Royal Society of Chemistry Information Services. Cambridge, UK, 2–13.
- KIM T.J., LEE E.Y., KIM Y.J., CHO K.-S., RYU H.W. 2003. Degradation of polyaromatic hydrocarbons by Burkholderia cepacia 2A-12. World J. Microb. Biot., 19: 411–417.
- LEE S., GAN J., KIM J.S., KABASHIMA J.N., CROWLEY D.E. 2004. Microbial transformation of pyrethroid insecticides in aqueous and sediment phases. Environ. Toxicol. Chem., 23: 1–6.
- LUTNICKA H., BOGACKA T., WOLSKA L. 1999. Degradation of pyrethroids in an aquatic ecosystem model. Water Research, 33: 3441–3446.
- MALONEY S.E., MAULE A., SMITH A.R.W. 1988. Microbial transformation of the pyretroid insecticides: permethrin, deltamethrin, fastac, and fluvalinate. Appl. Environ. Microbiol., 54: 2874–2876.
- MISKIN I., RHOEDS G., LAWLOR K., SAUNDERS J.R., PICKUP R.W. 1998. Bacteria in post-glacial freshwater sediments. Microbiol., 144: 2427–2434.
- NARAHASHI T. 1996. Neuronal ion channels as the targets sites of insecticides. Pharmacol. Toxicol., 79: 1–14.
- NIEWOLAK S. 1968. Seasonal changes of the heterotrophic microflora of the Iława lakes bottom sediments. Pol. Arch. Hydrobiol., 3: 211–224.
- NISHIKAWA S., SONOKI T., KASAHARA T., OBI T., KUBOTA S., KAWAI S., MOROHOSH N., KATAYAMA Y. 1998. Cloning and sequencing of the Sphingomonas (Pseudmonas) paucimobilis gene essential for o-demethylation of vanillate and syringate. Appl. Environ. Microbiol., 63: 836–845.
- PAL R., BALA SH., DADHWAL M., KUMAR M., DHINGRA G., PRAKASH O., PRABTGARAN S.R., SHIVASI S., CULLUM J., HOLLIER CH., LAL R. 2005. Hexachlorocyclohexane – degrading bacterial strains Sphingomonas paucimobilis B90A, UT26 and Sp+, having similar genes, represent three distinct species, Sphingobium indicum sp., nov., Sphingobium japonicum sp., nov., and Sphingobium francense sp. nov., and reclassification of [Sphingomonas] chungbukensis as Sphingobium chungbukense comb. nov. Int. J. Evol. Microbiol., 55: 1965–1972.
- PAWLISH V., BUSHARDA J., MCLAUCHLIN A., CAUX P.Y., KENT R.A. 1998. Canadian water quality guidelines for deltamethrn. Environ. Toxicol. Wat Qual., 13: 175–210.
- PARKES R.J., CRAGG B.A., BALE S.J., GETLIFF J.M., GOODMAN K., ROCHELLE P.A., FRY J.C., WEIGHTMAN A.J., HARVEY S.M. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature, 371: 410–416.
- RÓŻAŃSKI L. 1992. Przemiany pestycydów w organizmach żywych i w środowisku. PWRiL, Warszawa.
- SOGORB M.A., VILANOVA E. 2002. Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol. Letters, 128: 215–228.
- TANGAROMSUK J., POKETHTIYOOK P., KRUATRACHUE M., UPATHAM E.S. 2002. Cadmium biosorption by Sphingomonas paucimobilis biomass. Biosource Technol., 85: 103–111.
- TALLUR P.N., MEGADI V.B., NINNEKAR H.Z. 2007., Biodegradation of Cypermethrin by Micrococcus sp. strain CPN 1. Biodegtadation, published on-line, <http://www.springerlink.com/content/m071432200687520/>, 10-09-2007.
- WARREN N., ALLAN I.J., CARETR J.E., HOUSE W.A., PARKER A. 2003. Pesticides and other micro-organic contaminants in freshwater sedimentary environments-a review. Appl. Geochem., 18: 159–162.
- Word Health Organization. 1997. Deltamethrin. In: Environmental Health Criteria, vol. 92. WHO, Geneva.
- ZHANG, L.Z., KHAN S.U., AKHTAR M.H., IVARSON K.C. 1984. Persistence, degradation, and distribution of deltamethrin in an organic soil under laboratory conditions. J. Agric. Food Chem., 32: 1207–1211.
- ZIPPER CH., NICKEL K., ANGST W., KOHLER H.P. 1996. Complete microbial degradation of both enantiomers of the chiral herbicide mecoprop [(RS)-2-(chloro-2-methylphenoxy) propionic acid] in an Enantioselective Manner by Sphingomonas herbicidovorans sp. nov. Appl. Environ. Microb., 12: 4318–4322.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-a55af5f6-97c3-4938-8184-126f51c1c43f