Warianty tytułu
Języki publikacji
Abstrakty
Recently we have found that the formation of megamitochondria in culture cells of various sources, induced by chemicals capable of generating free radicals, is followed by apoptotic changes of the cell. Detailed analysis on functional and morphological aspects of megamitochondria has enabled us to speculate that the formation of megamitochondria may be a prerequisite for free radical-mediated apoptosis: free radicals modify the mitochondrial membranes resulting in the fusion of adjacent mitochondria (megamitochondria formation). If the intracellular level of free radicals is continuously kept high, the permeability transition pores of the megamitochondria membranes are opened and megamitochondria become swollen. Oxygen consumption and the ability to synthesise ATP by swollen megamitochondria decrease distinctly. At the same time, cytochrome c is released from swollen megamitochondria into the cytoplasm. If lowered rates of the generation of reactive oxygen species from swollen megamitochondria, possibly due to decrease in their oxygen consumption, are effective enough to lower the intracellular level of free radicals, megamitochondria may return to normal. If not, decrease in the membrane potential of megamitochondria membranes causes the release of apoptosis-inducing factor into the cytoplasm. Cytochrome c and apoptosis-inducing factor thus released into the cytoplasm may cause cytoplasmic and nuclear apoptotic changes. Experimental data to support this hypothesis are presented.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.223-237,fig.
Twórcy
autor
- Nagoya University School of Medicine, 65, Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan, e-mail: twakaba@tsuru.med.nagoya-u.ac.jp
Bibliografia
- 1. Collins, M., Marbel, J., Malde, P. & Rivas, A. (1992) Interleukin 3 protects murine bone marrow cells from apoptosis induced by DNA damaging agents. J. Exp. Med. 176, 1043- 1051.
- 2. Bisonette, R.P., Echeverri, R.H., Mahboubi, A. & Green, D.R. (1992) Apoptotic cell death induced by c-mic is inhibited by bcl-2. Nature 359. 552-554.
- 3. Fanidi, A., Harrington, E.A. & Evans, G.I. (1992) Cooperative interaction between c-myc and bcl-2 proto-oncogenes. Nature 359. 554- 556.
- 4. Oliver, F.C., Marvel, J., Collins, M.K. & Lopez- Rivas, A. (1993) Bcl-2 oncogene protects a bone marrow-derived pre-B-cell line from 5'- fluor-2-deoxyuridine-induced apoptosis. Bio- chem. Biophys. Res. Commun. 194. 126-132.
- 5. Zhong, L.T., Sarafian, T„ Kane, D.J., Charles, A.C., Mah, S.P., Edward, R.H. & Bredesen, D.E. (1993) Bcl-2 inhibits death of central neural cells induced by multiple agents. Proc. Natl Acad. Sci. U.S.A. 90, 4533-4537.
- 6. Lotem, J. & Sachs, L. (1993) Regulation by bcl- 2, c-myc, and p53 of susceptibility to induction of apoptosis by heat shock and cancer chemotherapy compounds in differentiation-competent and -defective myeloid leukemic cells. Cell Growth & Differ. 4, 41-47.
- 7. Slater, A.F.G., Nobel, C.S.I., Maellaro, E., Bustamante, J., Kimland, M. & Orrenius, S. (1995) Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem. J. 306, 771-778.
- 8. Korsmeyer, S.J., Yin, X.M., Oltvai, Z.N., Veis- Novak, D.J. & Linette, G.P. (1995) Reactive oxygen species and the regulation of cell death by the Bcl-2 gene family. Biochim. Biophys. Acta 1271, 63-66.
- 9. Clearly, M.L. & Sklar, J. (1985) Nucleotide sequence of a t(14:18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc. Natl. Acad. Sci. U.S.A. 82. 7439-7443.
- 10. Miyashita, T. & Reed, J.C. (1992) Bcl-2 transfer increases relative resistance of S49.1 and WEHI7.2 lymphoid cells to cell death and DNA fragmentation induced by glucocorticoids and multiple chemotherapeutic drugs. Cancer Res. 52. 5401-5411.
- 11. Hockenbery, D.M., Oltvai, Z.N., Yin, X.-M., Milliman, C.L. & Korsmeyer. S.J. (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75, 241-251.
- 12. Newmeyer, D.D., Farschon, D.iM. & Reed, J.C. (1994) Cell-free apoptosis in Xenopus egg extracts: Inhibition by Bcl-2 and requirement for an organelle fraction enriched in mitochondria. Cell 79, 353-364.
- 13.Srinivasula, S.M., Fernandes-Alnemri, T., Zangrilli, J., Robertson, N., Armstrong, R.C., Wang, L., Trapani, J.A., Tomaselli, K.J., Lit- wack, G. & Alnemri, E.S. (1996) The Ced-3/in- terleukin 1/? converting enzyme-like homolog Mch6 and the lamin-cleaving enzyme Mch2cr are substrates for the apoptotic mediator CPP32. J. Biol Chem. 271, 27099-27106.
- 14.Shimizu, S., Eguchei, Y., Kamiike, W., Mat- suda, H. & Tsujimoto, Y. (1996) Bcl-2 expression prevents activation of the ICE protease cascade. Oncogene 12, 2251-2257.
- 15. Yang, J., Liu, X., Kim, C.N., Ibrado, A.M., Cai, J., Peng. T.I., Jones, D.P. & Wang. X. (1997) Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275. 1129-1132.
- 16. Kluck, R.M., Bossy-Wetzel, E., Green, D.R. & Newmeyer, D.D. (1997) The release of cytochrome c from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275. 1132-1136.
- 17. Zamzami, N., Marchetti, P., Castedo, M., Za- nin, C., Vayssiere, J.L., Petit. P.X. & Kroemer, G. (1995) Reduction in mitochondria potential constitutes an early irreversible step of programmed lymphocyte. J. Exp. Med. 181, 1661-1672.
- 18. Zamzami, N., Marchetti, P., Castedo. M., De- caudin, D., Macho, A., Hirsch, T., Susin. S.-A., Petit, P.X., Mignotte, B. & Kroemer, G. (1995) Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death. J. Exp. Med. 182. 367-377.
- 19. Zamzami, N., Susin, S.A., Marechetti, T., Hirsch, T., Castedo. M. & Kroemer. G. (1996) Mitochondrial control of nuclear apoptosis. J. Exp. Med. 183, 1533-1544.
- 20. Petit, P.X., Susin, S.A., Zamzami. N., Mignotte, B. & Kroemer, G. (1996) Mitochondria and programmed cell death: Back to the future. FEBS Lett. 396. 7-13.
- 21. Kane, D.J., Sarafian, T.A., Anton, R., Hahn, H., Gralla, E.B., Valentine, J.S., Ord, T. & Bre- desen, D.E. (1993) Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 262, 1274-1277.
- 22. Gimeno, A., Trueba, J.L., Blanco, M. & Gosal- vez, M. (1973) Mitochondrial functions in five cases of human neuromuscular disorders. J. Neurol Neurosurg. Psychiat. 36, 806-812.
- 23. Worsfold, M., Park, D.C. & Pennington, R.J. (1973) Familial "mitochondrial" myopathy. A myopathy associated with disordered oxidative metabolism in muscle fibers. 2. Biochemical findings. J. Neurol. Sci. 19, 261-274.
- 24. Cederbaum, A.I., Lieber, C.S. & Rubin, E. (1974) Unexpected oxidation of a nitroxide alcohol with m-chlorobenzoic acid. Arch. Bio- chem. Biophys. 165, 560-569.
- 25.Schotland, D.L., DiMauro, S., Bonilla, E., Scarpa, A. & Lee, C.-P. (1976) Neuromuscular disorder associated with a defect in mitochondrial energy supply. Arch. Neurol. 33, 475- 479.
- 26. DiMauro, S., Bonilla, E.. Lee, C.-P., Schatland, D.L., Scarpa, A., Conn, H., Jr. & Chance, B. (1976) Luft's disease. Further biochemical and ultrastructural studies of skeletal muscle in the second case. J. Neurol. Sci. 27, 217- 232.
- 27. Wakabayashi, T., Asano, M. & Kawamoto, S. (1979) Induction of megamitochondria in the mouse liver by isonicotinic acid derivatives. Exp. Mol Pathol 31, 387-399.
- 28. Wakabayashi, T., Horiuchi, M., Sakaguchi, M., Onda, H. & Misawa, K. (1983) Induction of megamitochondria in the mouse and rat livers by hydrazine. Exp. Mol Pathol 39, 139-153.
- 29. Wakabayashi, T., Horiuchi, M., Sakaguchi, M., Misawa, K., Onda, H., Iijima, M. & All- mann, D.W. (1984) Mechanism of hepatic megamitochondria formation by ammonia derivatives. Correlation between structure of chemicals and their ability to induce the formation of megamitochondria. Eur. J. Bio- chem. 143, 455-465.
- 30. Wakabayashi, T., Adachi, K. & Popinigis, J. (1991) Effects of alkyl alcohols and related chemicals on rat liver structure and function. I. Induction of two distinct types of megamitochondria. Acta Pathol Jpn. 41, 405-413.
- 31. Matsuhashi, T., Liu, X.-R., Usukura, J., Wozniak, M. & Wakabayashi, T. (1996) Mechanism of the formation of megamitochondria in the mouse liver induced by chloramphenicol. Toxicol Lett. 86, 47-54.
- 32. Wakabayashi. T., Yamashita, K., Adachi, K., Kawai, K., Iijima, M., Gekko, K., Tsudzuki, T., Popinigis, J. & Momota, M. (1987) Changes in physicochemical properties of mitochondria membranes during the formation process of megamitochondria induced by hydrazine. Toxicol Appl Pharmacol 87, 235-248.
- 33. Adachi, K., Wakabayashi, T. & Popinigis, J. (1991) Effects of alkyl alcohols and related chemicals on rat liver structure and function. II. Some biochemical properties of ethanol-, propanol- and butanol-treated rat liver mitochondria. Acta Pathol Jpn. 41, 414-427.
- 34. Adachi, K., Momota, Y., Teranishi, Y., Ueki, R., Hagiwara, T. & Wakabayashi, T. (1992) Effects of alkyl alcohols arid related chemicals on rat liver structure and function. III. Physicochemical properties of ethanol-, propanol- and butanol-treated rat liver mitochondria membrane. Acta Pathol Jpn. 42, 544-557.
- 35. Adachi, K., Matsuhashi, T., Nishizawa, Y., Usukura, J., Momota, M., Popinigis, J. & Wakabayashi, T. (1994) Further studies on physicochemical properties of mitochondrial membranes during the formation process of megamitochondria in the rat livers by hydrazine. Exp. Mol Pathol 61, 134-151.
- 36. Matsuhashi, T., Karbowski, M., Liu, X.-R.. Usukura, J., Nishizawa, Y., Wozniak, M. & Wakabayashi, T. (1998) Complete suppression of ethanol-induced formation of megamitochondria by 4-hydroxy-2,2,6,6-tetramethyl-piperidine-l-oxyl (4-OH-TEMPO). Free Radical RioL Méd. 24, 139-147.
- 37. Matsuhashi, T., Liu, X.-R., Nishizawa, Y., Kar- bowski, M., Antosiewicz, J. & Wakabayashi, T. (1997) Role of free radicals in the mechanism of the hydrazine-induced formation of megamitochondria. Free Radical Biol Med. 23. 285-293.
- 38. Antosiewicz, J.. Nishizawa, Y., Liu. X.-R., Usu- kura, J. & Wakabayashi, T. (1994) Suppression of the hydrazine-induced formation of megamitochondria in the rat liver by a-to- copherol. Exp. Mol Pathol 60, 173-187.
- 39. Adachi, K., Matsuhashi, T., Nishizawa, Y., Usukura, J., Popinigis, J. & Wakabayashi, T. (1995) Suppression of the hydrazine-induced formation of megamitochondria in the rat liver by CoQ10 Toxicol. Pathol. 23, 667-676.
- 40. Matsuhashi, T., Karbowski. M., Liu, X.-R, Usukura, J., Wozniak, M. & Wakabayashi. T. (1998) Complete suppression of ethanol-in- duced formation of megamitochondria by 4- hydroxy-2,2,6,6-tetramethvlpiperidine-l-oxyl (4-OH-TEMPO). Free Radical Biol Med. 24. 139-147.
- 41. Wakabayashi. T., Adachi, K., Matsuhashi, T., Wozniak, M., Antosiewicz, J. & Karbowski. M. (1997) Suppression of the formation of megamitochondria by scavengers for free radicals. Molec. Aspects Med. 18 (Suppl.) s5l- s61.
- 42. Karbowski, M., Kurono. C., Nishizawa, Y. & Wakabayashi, T. (1997) Induction of megamitochondria by some chemicals inducing oxidative stress in primary cultured rat hepato- cytes. Biochim. Biophys. Acta 1349. 242-250.
- 43. Karbowski, M., Kurono, C.. Wozniak, M., Os- trowski, M., Teranishi, M., Soji, T. & Wakabayashi, T. (1999) Cycloheximide and 4-OH- TEMPO suppress chloramphenicol-induced apoptosis in RL-34 cells via the suppression of the formation of megamitochondria. Biochim. Biophys. Acta 1449, 25-40.
- 44. Bernstein. J.D. & Pennial, R. (1978) Effects of chronic ethanol treatment upon rat liver mitochondria. Biochem. Pharmacol. 27. 2337- 2342.
- 45. Wakabayashi, T. & Green, D.E. (1974) On the mechanism of cuprizone-induced formation of megamitochondria. Bioenergetics6. 179-192.
- 46. Wakabayashi, T., Horiuchi, M., Sakaguchi, M., Onda, H. & Misawa, K. (1983) Induction of megamitochondria in the mouse and rat livers by hydrazine. Exp. Mol Pathol 39,139-153.
- 47. Thayer, W.S. (1987) Effects of ethanol on proteins of mitochondrial membranes. Ann. N.Y. Acad. Sei. 492, 193-206.
- 48. Quintaniella, M.E. & Tampier, L. (1971) Ethanol intake effect on liver and brain mitochondrial function and acetaldehyde oxidation. Alcoholism 9, 375-380.
- 49. Adachi, K.. Matsuhashi. T., Nishizawa, Y., Usukura, J., Popinigis, S. & Wakabayashi, T. (1995) Studies on urea synthesis in the liver of rats treated chronically with ethanol using perfused livers, isolated hepatocytes and mitochondria. Biochem. Pharmacol 50, 1391- 1399.
- 50. McConnell, S.J., Stewart. L.C., Talin, A. & Yaffe, M.P. (1990) Temperature-sensitive yeast mutants defective in mitochondrial inheritance. J. Cell Biol 111, 967-976.
- 51. McConnell, S.J. & Yaffe, M.P. (1992) Nuclear and mitochondrial inheritance in yeast depends on novel cytoplasmic structures defined by MDM1 protein. J. Cell Biol 118. 385-395.
- 52. Jones, B.A. & Fangman, W.L. (1992) Mitochondrial DNA maintenance in yeast requires a protein containing a region related to the GTP-binding domain of dynamin. Genes Dev. 6, 380-389.
- 53. Guan, K., Fahr. L., Marshall, T.K. & Des- cenes, R.J. (1993) Normal mitochondrial structure and genome maintenance in yeast requires the dynamin-like product of the MGM1 gene. Curr. Genet. 24, 141-148.
- 54.Sogo, L.F. & Yaffe, M.P. (1994) Regulation of mitochondrial morphology and inheritance by MdmlOp, a protein of the mitochondrial outer membrane. J. Cell BiolL 126, 385-395.
- 55. Burgess, S.M., Delannoy, M. & Jensen, R.E. (1994) MMMl encodes a mitochondrial outer membrane protein essential for establishing and maintaining the structure of yeast mitochondria. J. Cell Biol. 126, 1375-1391.
- 56. Hermann, G.T., King, E.J. & Shaw, J.M. (1997) The yeast gene, MDM20, is necessary for mitochondrial inheritance and organization of the actin cytoskeleton. J. Cell Biol. 137, 141-153.
- 57. Hales, K.G. & Fuller, M.T. (1997) Develop- mentally regulated mitochondrial fusion mediated by a conserved, novel, predicted GTPase. Cell 90. 121-129.
- 58. Berger, K.H., Sogo. L.F. & Yaffe, M.P. (1997) Mdml2p, a component required for mitochondrial inheritance that is conserved between budding and fission yeast J. Cell Biol. 136, 545-553.
- 59.Boldogh, I., Vojtov, N., Karmon, S. & Pon, L.A. (1998) Interaction between mitochondria and the actin cytoskeleton in budding yeast requires two integral mitochondrial outer membrane proteins Mmmlp and MdmlOp. J. Cell Biol. 141, 1371-1381.
- 60.0tsuga, D., Keegan, B.R., Brisch, E., Thatcher, J.W., Hermann, G.J., Bleazard, W. & Shaw, J.M. (1998) The dynamin-related GTPase, Dnmlp, controls mitochondrial morphology in yeast. J. Cell Biol. 143. 333-349.
- 61.Smirnova, E., Shurland, D.-L., Ryazantsev, S.N. & van den Bliek, A.M. (1998) A human dynamin-related protein controls the distribution of mitochondria. J. Cell Biol. 143. 351-358.
- 62. Hermann, G.T., Thatcher, J.W., Mills, J.P., Hales, K.G., Fuller, M.T., Nunnari, J. & Shaw, J.M. (1998) Mitochondrial function in yeast requires the transmembrane GTPase Fzolp. J. Cell Biol. 143. 359-373.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-a297f954-1202-401c-bb80-fdea9f536db6