Języki publikacji
Abstrakty
Three independent 28 or 32-day stationary cultures of Desulfotomaculum acetoxidans DSM 771 strain were carried out under anoxic conditions in acetate or lactate-containing media. The acids were the sole carbon and energy sources in these media. During cultivation the turbidity (for calculation of cell division index) and hydrogen sulfide contents were determined in culture broth and reduced glutathione and protein concentrations were assayed in culture broth supernatant. In these three successive cultures, the bacterium initially grew much faster on lactate than on acetate. However, after two weeks of culture this difference disappeared and in fact the growth rate was higher on acetate than on lactate. The level of H₂S formed (product of the dissimilatory pathway of sulfate reduction) demonstrated that this pathway was more effective when lactate was a carbon source and the average H₂S concentration was from over 3-fold to about 9-fold greater in lactate than in acetate cultures. Also GSH (glutathione, product of the assimilatory sulfate reduction pathway) average level was about 2-fold higher in lactate-grown cultures. The high negative values of the correlation coefficients between GSH and O, levels, especially during the first 4 days of cultivation, indicate that GSH is a very important antioxidizing extracellular agent of D. acetoxidans. The rapid increase in GSH level, preceding the release of H₂S, indicates the metabolic priority of the assimilation pathway of sulfate reduction. For both carbon sources the highest coefficient of correlation was found between protein and H₂S levels. These results suggest that hydrogen sulfide is bound by proteins (which contain cysteinyl residues) secreted by D. acetoxidans cells. Indicated way of H,S bounding could result in its acccumulation. This coefficient of correlation increased gradually in the successive cultures. The ratio of H₂S concentration to protein concentration increased gradually in the successive cultures, too.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.205-213,fig.,ref.
Twórcy
autor
- Pedagogical University of Krakow, Podbrzezie 3, 31-054 Krakow, Poland
autor
Bibliografia
- Akerboom T.P.M. and H. Sies. 1981. Assay of glutathione, glutathione disulfide and glutathione mixed disulfides in biological samples. Meth. Enzymol. 77: 373-82.
- Boschker H.T., W. de Graaf, M. Koster, L. Meyer-Reil and T.E. Cappenberg. 2001. Bacterial populations and processes involved in acetate and propionate consumption in anoxic brackish sediment. FEMS Microbiol. Ecol. 35: 97-103.
- Campbell L.L. and R. Jr Singleton. 1986. Genus Desulfotoma-culum, p. 1200-1202. In: P.H.A. Sneath (ed.), Bergey's Manual of Systematic Bacteriology, Baltimore: The Williams and Wilkins Co., Baltimore.
- Chambers L.A., P.A. Trudinger, J.W. Smith and M.S. Burns. 1975. Fractionation of sulfur isotopes by continuous culture of Desulfovibrio desulfuricans. Can. J. Microbiol. 21: 1602-1607.
- Deneke S. 2000. Thiol-based antioxidants. Curr. Top. Cell. Reg. 36: 151-179.
- Detmers J., V. Brüchert, K.S. Habicht and J. Kuever. 2001. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes. Appl. Environ. Microbiol. 67: 888-894.
- Fago J.K. and M. Popowsky. 1949. Spectrophotometric determination of hydrogen sulfide. Methylene blue method. Anal. Chem. 21: 732-734.
- Fareleira P., B.S. Santos, C. Antonio, P. Moradas-Ferreira, J. LeGall, A.V. Xavier and H. Santos. 2003. Response of a strict anaerobe to oxygen: survival strategies in Desulfovibrio gigas. Microbiology 149: 1513-1522. Gottschal J.C. 1992. Continuous culture, p. 559-572. In: J. Lederberg (ed.) Encyclopedia of Microbiology. Academic Press Inc., San Diego.
- Hancock I.C. and I.R. Poxton. 1988. Isolation and purification of cell walls, p. 55-67. In: I.C. Hancock and I.R. Poxton (ed.) Bacterial Cell Surface Techniques. John Wiley & Sons, Chichester.
- Hand C.E. and J.F. Honek. 2005. Biological chemistry of naturally occurring thiols of microbial and marine origin. J. Nat. Prod. 68: 293-308.
- Holt J.G., N.R. Krieg, P.H.A. Sneath, J.T. Staley and S.T. Williams. 1994. Dissimilatory sulfate- or sulfur-reducing bacteria, p. 335-46. Bergey's Manual of Determinative Bacteriology 9th ed. The Williams and Wilkins Co., Baltimore.
- Hristova K.R., M. Mau, D. Zheng, R.I. Aminov, R.I. Mackie, H.R. Gaskins and L. Raskin. 2000. Desulfotomaculum genus-and subgenus-specific 16S rRNA hybridization probes for environmental studies. Environ. Microbiol. 2: 143-159.
- Johnson M.S., I.B. Zhulin, M.E.R. Gapuzan and B.L. Taylor. 1997. Oxygen-dependent growth of the obligate anaerobe Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 179: 5598-5601.
- Kaplan I.R. and S.C. Rittenberg. 1964. Microbiological fractionation of sulphur isotopes. J. Gen. Microbiol. 34: 195-212.
- Leonowicz A., N.S. Cho, J. Luterek, A. Wilkolazka, M. Wojtaś-Wasilewska, A. Matuszewska, M. Hofrichter, D. Wesenberg and J. Rogalski. 2001. Fungal laccase: properties and activity on lignin. J. Basic Microbiol. 41: 185-227.
- Londry K.L. and D.J. Des Marais. 2003. Stable carbon isotope fractionation by sulfate-reducing bacteria. Appl. Environ. Microbiol. 69: 2942-2949.
- Londry K.L., L.L. Jahnke and D.J. Des Marais. 2004. Stable carbon isotope rations of lipid biomarkers of sulfate-reducing bacteria. Appl. Environ. Microbiol. 70: 745-751.
- Lowry O.H., N.J. Rosebrough, A.L. Farr and R.J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265-275.
- Monod J. 1949. The growth of bacterial cultures. Ann. Rev. Microbiol. 3: 371-394.
- Odier E. and I. Artaud. 1992. Degradation of lignin, p. 162-185. In: G. Winkelmann (ed.), Microbial Degradation of Natural Products. VCH, Wainheim.
- Ogasawara Y., S. Isoda and S. Tanabe. 1994. Tissue and subcellular distribution of bound and acid-labile sulfur, and the enzymatic capacity for sulfide production in the rat. Biol. Pharm. Bull. 17: 1535-1542.
- Pado R. and L. Pawłowska-Ćwięk. 2004. Changes during long-term growth of Desulfotomaculum acetoxidans DSM 771. Acta Biol. Crac. Ser. Bot. 46: 101-107.
- Pado R. and L. Pawłowska-Ćwięk. 2005. The uptake and accumulation of iron by the intestinal bacterium Desulfotomaculum acetoxidans DSM 771. Folia Biol. (Krakow) 53: 79-81.
- Pawłowska-Ćwięk L. and R. Pado. 2005. The role of benzoate screted by Desulfotomaculum acetoxidans DSM 771 in sulfate uptake. Acta Biochim. Pol. 52: 797-802.
- Poot M., H. Teubert, P.S. Rabinovitch and T.J. Kavanagh. 1995. De novo synthesis of glutathione is required for both entry into and progression through the cell cycle. J. Cell. Physiol. 163: 555-560.
- Russell R.R.B. 1988. Isolation and purification of proteins linked to the cell wall in Gram-positive bacteria, p. 104-110. In: I.C. Hancock and I.R. Poxton (ed.) Bacterial Cell Surface Techniques. John Wiley & Sons, Chichester.
- Scholten J.C. and A.J. Stams. 2000. Isolation and characterization of acetate-utilizing anaerobes from a freshwater sediment. Microb. Ecol. 40: 292-299.
- Stackebrandt E., C. Sproer, F.A. Rainey, J. Burghardt, O. Pauker and H. Hippe. 1997. Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis Desulfosporosinus orientis gen. nov. comb.nov. Int. J. Syst. Bacteriol. 47: 1134-1139.
- Steger J.L., C. Vincent, J.D. Ballard and L.R. Krumholz. 2002. Desulfovibrio sp. genes involved in the respiration of sulfate during metabolism of hydrogen and lactate. Appl. Environ. Microbiol. 68: 1932-1937.
- Widdel F. and N. Pfennig. 1981. Sporulation and further nutritional characteristics of Desusulfotomaculum acetoxidans. Arch. Microbiol. 129: 401-402.
Identyfikator YADDA
bwmeta1.element.agro-article-9fedde1f-42e5-4ef7-b811-d45bab81d04c