Warianty tytułu
Języki publikacji
Abstrakty
We describe a new factor in the recovery from inactivation in the ball and chain model. We propose a model in which the tension from the chain may help pull the ball away from its binding site, reducing the duration of the inactivation period. A corresponding model was built and analysed.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
526-534
Opis fizyczny
p.526-534,fig.,ref.
Twórcy
autor
- Silesian University of Technology, Ks.M.Strzody 9, 44-100 Gliwice, Poland
autor
Bibliografia
- 1. Armstrong, C.M. and Bezanilla F. Inactivation of the sodium channel, part II - gating current experiments. J. Gen. Physiol. 70 (1977) 567-590.
- 2. Goldin, A.L. Mechanisms of sodium channel inactivation. Curr. Op. Neurobiol. 13 (2003) 284-290.
- 3. Hoshi T., Zagotta, W.N. and Aldrich, R.W. Biophysical and molecular mechanisms of shaker potassium channel inactivation. Science 250 (1990) 533-538.
- 4. Zagotta, W.N., Hoshi, T. and Aldrich, R.W. Restoration of inactivation in mutants of shaker potassium channels by a peptide derived from ShB. Science 250 (1990) 568-571.
- 5. Murrell-Lagnado, R.D. and Aldrich, R.W. Interactions of amino terminal domains of shaker K channels with a pore blocking site studied with synthetic peptides. J. Gen. Physiol. 102 (1993) 949-975.
- 6. Demo, S.D. and Yellen, G. The inactivation gate of the shaker K+ channel behaves like an open-channel blocker. Neuron 7 (1991) 743-753.
- 7. Gomez-Lagunas, F. and Armstrong, C.M. The Relation between ion permeation and recovery from inactivation of ShakerB K+ channels. Biophys. J. 67 (1994) 1806-1815.
- 8. Haak, R.A., Kleinhans, F.W. and Ochs, S. The viscosity of mammalian nerve axoplasm measured by electron spin resonance. J. Physiol. 263 (1976) 115-137.
- 9. Collins, R.M.W. Physics of potassium ion channel inactivation in neurons. Am. J. Undergr. Res. 3 (2004) 27-35.
- 10. Małysiak, K., Borys, P. and Grzywna, Z.J. On the ball and chain model by simple and hyperbolic diffusion - an analytical approach. Acta Phys. Pol. B 38 (2007) 1865-1879.
- 11. Krasilnikov, O.V., Rodrigues, C.G. and Bezrukov, S.M. Single polymer molecules in a protein nanopore in the limit of a strong polymer-pore attraction. Phys. Rev. Lett. 97 (2006) 018301-1 – 018301-4, DOI:10.1103/ PhysRevLett.97.018301.
- 12. Rubinstein, M. and Colby, R.H. Polymer Physics, Oxford University Press, New York, 2003, 49-331.
- 13. Gedde, U.W. Polymer Physics, Kuwler Academic Publishers, Dordrecht, 2001, 107-108.
- 14. Ermak, D.L. and McCammon, J.A. Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69 (1978) 1352-1360.
- 15. Dickinson, E. Brownian dynamics with hydrodynamic interactions: The application to protein diffusional problems. Chem. Soc. Rev. 14 (1985) 421- 443.
- 16. Liebovitch, L.S., Selector, L.Y. and Kline, R.P. Statistical properties predicted by the ball and chain model of channel inactivation. Biophys. J. 63 (1992) 1579-1585.
- 17. Rose, G.D., Geselowitz, A.R., Lesser, G.J., Lee, R.H. and Zehfus, M.H. Hydrophobicity of amino acid residues in globular proteins. Science 229 (1985) 834-838.
- 18. Chung, S.H., Allen, T.W., Hoyles, M. and Kuyucak, S. Permeation of ions across the potassium channel: Brownian dynamics studies. Biophys. J. 77 (1999) 2517-2533.
- 19. Buscaglia, M., Lapidus, L.J., Eaton, W.A. and Hofrichter, J. Effects of denaturants on the dynamics of loop formation in polypeptides. Biophys. J. 91 (2006) 276-288.
- 20. Marko, J.F. and Siggia, E.D. Stretching DNA. Macromolecules 28 (1995) 8759-8770.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-9fa23407-4203-42b3-b185-26723b81823d