Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2007 | 12 | 2 |
Tytuł artykułu

Phenol red in the culture medium strongly affects the susceptibility of human MCF-7 cells to roscovitine

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Estrogens play an important role in the growth and terminal differentiation of the mammary gland. Prolonged exposure to estrogens seems to predispose women to breast cancer. It recently became evident that not only the intrinsic hormonal status but also external factors such as the occurrence of pharmaceuticals and chemicals with hormone activity in the environment may put women at greater risk of developing breast cancer. We focused on the interference of endocrine disruptors in breast cancer therapy. We observed that phenol red added to the culture medium strongly promoted the cell proliferation and cell cycle progression of human cells expressing the estrogen receptor, and affected their susceptibility to chemotherapy.
Wydawca
-
Rocznik
Tom
12
Numer
2
Opis fizyczny
p.280-293,fig.,ref.
Twórcy
  • Vienna Medical University, Borschkegasse 8a, A-1090 Vienna, Austria
autor
autor
autor
autor
Bibliografia
  • 1. Hulka, B.S. and Stark, A.T. Breast cancer: cause and prevention. Lancet 346 (1995) 883-887.
  • 2. Martin, A.M. and Weber, B.L. Genetic and hormonal risk factors in breast cancer. J. Natl. Cancer Inst. 92 (2000) 1126-1135.
  • 3. Green, S., Walter, P., Kumar, V., Krust, A., Bornert, J.M, Argos, P. and Chambon, P. Human oestrogen receptor cDNA: sequence, expression and homology to v-erb A. Nature 320 (1986) 134-139.
  • 4. Greene, G.L, Gilna, P., Waterfield, M., Baker, A., Hort, Y. and Shine, J. Sequence and expression of human estrogen receptor complementary DNA. Science 231 (1986) 1150-1154.
  • 5. Kuiper, G.G., Enmark, E., Pelto-Huikko, M., Nilsson, S. and Gustafsson, J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA 93 (1996) 5925-5930.
  • 6. Evans, R.M. The steroid and thyroid hormone receptor superfamily. Science 240 (1988) 889-895.
  • 7. Beato, M. Gene regulation by steroid hormones. Cell 56 (1989) 335-344.
  • 8. Ham, J. and Parker, M.G. Regulation of gene expression by nuclear hormone receptors. Curr. Opin. Cell Biol. 1 (1989) 503-511.
  • 9. Gronemeyer, H. Transcription activation by extrogen and progesteron receptors. Annu. Rev. Gen. 25 (1991) 89-123.
  • 10. Sukovich, D.A., Mukherjee, R. and Benfield, P.A. A novel, cell-type specific mechanism for estrogen receptor-mediated gene activation in the absence of an estrogen-responsive element. Mol. Cell. Biol. 14 (1994) 7134- 7143.
  • 11. Liu, J. and Sidell, N. Anti-estrogenic effects of conjugated linoleic acid through modulation of estrogen receptor phosphorylation. Breast Cancer Res. Treat. 94 (2005) 161-169.
  • 12. Devarajan, E., Sahin, A.A., Chen, J.S., Krishnamurthy, R.R., Aggarwal, N., Brun, A.M., Saprino, A., Zhang, F., Sharma, D., Yang, X.H. Tora, A.D. and Mehta, K. Down-regulation of caspase-3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21 (2002) 8843-8851.
  • 13. Wesierska Gadek, J., Gueorguieva, M. and Horky, M. Dual action of cyclindependent kinase inhibitors: induction of cell cycle arrest and apoptosis. A comparison of the effects exerted by roscovitine and cisplatin. Polish J. Pharmacol. 55 (2003) 895-902.
  • 14. Jänicke, R.U., Sprengart, M.L., Wati, M.R. and Porter, A.G. Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J. Biol. Chem. 273 (1998) 9357-9360.
  • 15. Yonish-Rouach, E., Resnitzky, D., Lotem, J., Sachs, L., Kimchi, A. and Oren, M. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352 (1991) 345-347.
  • 16. Kovar, H., Jug, G., Printz, D., Bartl, S., Schmid, G. and Wesierska-Gadek, J. Characterization of distinct consecutive phases in non-genotoxic p53- induced apoptosis of Ewing tumor cells and the rate-limiting role of caspase 8. Oncogene 19 (2000) 4096-4107.
  • 17. Haupt, S., Berger, M., Goldberg, Z. and Haupt, Y. Apoptosis – the p53 network. J. Cell Sci. 116 (2003) 4077-4085.
  • 18. Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y. and Taya, Y. p53AIP1, a potent mediator of p53-dependent apoptosis, and its regulation bySer-46- phosphorylated p53. Cell 102 (2000) 849-862.
  • 19. Matsuda, K., Yoshida, K., Taya, Y., Nakamura, K., Nakamura, Y. and Arakawa, H. p53AIP1 regulates the mitochondrial apoptotic pathway. Cancer Res. 62 (2002) 2883-2889.
  • 20. Wojciechowski, J., Horky, M., Gueorguieva, M. and Wesierska-Gadek, J. Rapid onset of nucleolar disintegration preceding cell cycle arrest in roscovitine-induced apoptosis of human MCF-7 breast cancer cells. Int. J. Cancer 106 (2003) 486-495.
  • 21. Wesierska Gadek, J., Gueorguieva, M. and Horky, M. Roscovitine-induced up-regulation of p53AIP1 protein precedes the onset of apoptosis in human MCF-7 breast cancer cells. Mol. Cancer Ther. 4 (2005) 113-124.
  • 22. Wesierska-Gadek, J., Schreiner, T., Gueorguieva, M. and Ranftler, C. Phenol red reduces ROSC mediated cell cycle arrest and apoptosis in human MCF-7 cells. J. Cell. Biochem. 98 (2006) 1367-1379.
  • 23. Wesierska-Gadek, J., Schloffer, D., Gueorguieva, M., Uhl, M. and Skladanowski, A. Increased susceptibility of poly(ADP-ribose) polymerase1 knockout cells to antitumor triazoloacridone C-1305 is associated with permanent G2 cell cycle arrest. Cancer Res. 64 (2004) 4487-4497.
  • 24. Wesierska-Gadek, J., Gueorguieva, M., Ranftler, C. and Zerza-Schnitzhofer, G. A new multiplex assay allowing simultaneous detection of the inhibition of cell proliferation and induction of cell death. J. Cell. Biochem. 96 (2005) 1-7.
  • 25. Wesierska-Gadek, J. and Schmid, G. Overexpressed poly(ADP-ribose) polymerase delays the release of rat cells from p53-mediated G1 checkpoint. J. Cell. Biochem. 80 (2000) 85-103.
  • 26. Vindelov, L.L., Christensen, I.J. and Nissen, N.J. A detergent-trypsin method for the preparation of nuclei for flow cytometric DNA analysis. Cytometry 3 (1983) 323-327.
  • 27. Schiff, R. and Fuqua S. 2002. The importance of the estrogen receptor in breast cancer. In: Pasqualini L. (ed.) Breast cancer: prognosis, treatment and prevention. Marcel Dekker Inc. New York, pp. 149-186.
  • 28. Speirs, V. Oestrogen receptor beta in breast cancer: good, bad or still to early to tell? J. Pathol. 19 (2002) 143-147.
  • 29. Parl, F.F. 2000. Estrogens, estrogen receptors and breast cancer. IOS Press, Ohmsha, Amsterdam.
  • 30. Hall, J.M., Couse, J.F. and Korrach, K.S. The multifaceted mechanisms of estradiol and estrogen receptor signaling. J. Biol. Chem. 276 (2001) 36869- 36872.
  • 31. Hilakivi-Clarke, L. Estrogens, BRCA1, and breast cancer. Cancer Res. 60 (2000) 4993-5001.
  • 32. Marquis, S.T., Rajan, J.V., Wynshaw-Boris, A., Xu, J., Yin, G-Y., Abel, K.J., Weber, B. and Chodosh, L.A. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nature Genet. 11 (1995) 17-26.
  • 33. Gudas, J.M., Nguyen, H., Li, T. and Cowan, K.H. Hormone-dependent regulation of BRCA1 in human breast cancer cells. Cancer Res. 55 (1995) 4561-4565.
  • 34. Spillman, M.A. and Bowcock, A.M. BRCA1 and BRCA2 mRNA levels are coordinately elevated in human breast cancer cells in response to estrogen. Oncogene 13 (1996) 1639-1645.
  • 35. Hurd, C., Khattree, N., Dinda, S., Alban, A. and Moudgil, V.K. Regulation of tumor suppressor proteins, p53 and retinoblastoma, by estrogen and antiestrogens in breast cancer cells. Oncogene 15 (1997) 991-995.
  • 36. Berthois, Y., Katzenellenbogen, J.A. and Katzenellenbogen, B.S. Phenol red in tissue culture media is a weak estrogen: Implications concerning the study of estrogen-responsive cells in culture. Proc. Natl. Acad. Sci. USA 83 (1986) 2496-2500.
  • 37. Zwijsen, R.M., Wientjens, E., Klompmaker, R., van der Sman, J., Bernards, E. and Michalides, R.J. CDK-independent activation of estrogen receptor by cyclin D1. Cell 88 (1997) 405-415.
  • 38. Neuman, E., Ladha, M.H., Lin, N., Upton, T.M., Miller, S.J., DiRenzo, J., Pestell, R.G., Hinds, P.W., Dowdy, S.F., Brown, M. and Ewen, M.E. Cyclin D1 stimulation of estrogen receptor transcriptional activity independent of cdk4. Mol. Cell. Biol. 17 (1997) 5338-5347.
  • 39. Martin, L.A., Farmer, I., Johnston, S.R., Ali, S., Marshall, C. and Dowsett, M. Enhanced estrogen receptor (ER)α, ERBB2, and MAPK signal transduction pathways during the adaptation of MCF-7 cells to long term estrogen deprivation. J. Biol. Chem. 278 (2003) 30458-30468.
  • 40. Santen, R.J., Lobenhofer, E.K., Afshari, C.A., Bao, Y. and Song, R.X. Adaptation of estrogen-regulated genes in long-term estradiol deprived MCF-7 breast cancer cells. Breast Cancer Res. Treat. 94 (2005) 213-223.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-9b620d84-d887-44dd-888b-9fd8cdc91309
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.