Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2005 | 52 | 2 |
Tytuł artykułu

TGF beta signalling and its role in tumour pathogenesis

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Transforming growth factor beta (TGF-β) is a multifunctional cytokine involved in the regulation of cell proliferation, differentiation and survival/or apoptosis of many cells. Knock-out experiments in mice for the three isoforms of TGF-β have demonstrated their importance in regulating inflammation and tissue repair. TGF-β is implicated in the pathogenesis of human diseases, including tissue fibrosis and carcinogenesis. TGF-β receptors act through multiple intracellular pathways. Upon binding of TGF-β with its receptor, receptor-regulated Smad2/3 proteins become phosphorylated and associate with Smad4. Such complex translocates to the nucleus, binds to DNA and regulates transcription of specific genes. Negative regulation of TGF-β/Smad signalling may occur through the inhibitory Smad6/7. Furthermore, TGF-β-activated kinase-1 (TAK1) is a component of TGF-β signalling and activates stress-activated kinases: p38 through MKK6 or MKK3 and c-Jun N-terminal kinases (JNKs) via MKK4. In the brain TGF-β, normally expressed at the very low level, increases dramatically after injury. Increased mRNA levels of the three TGF-β isoforms correlate with the degree of malignancy of human gliomas. TGF-βs are secreted as latent precursors requiring activation into the mature form. TGF-β may contribute to tumour pathogenesis by direct support of tumour growth and influence on local microenvironment, resulting in immunosuppression, induction of angiogenesis, and modification of the extracellular matrix. TGF-β1,2 may stimulate production of vascular endothelial growth factor (VEGF) as well as plasminogen activator inhibitor (PAI-I), that are involved in vascular remodelling occurring during angiogenesis. Blocking of TGF-β action inhibits tumour viability, migration, metastases in mammary cancer, melanoma and prostate cancer model. Reduction of TGF-β production and activity may be a promising target of therapeutic strategies to control tumour growth.
Wydawca
-
Rocznik
Tom
52
Numer
2
Opis fizyczny
p.329-337,fig.,ref.
Twórcy
autor
  • Nencki Institute of Experimental Biology, Warsaw, Poland
Bibliografia
  • An DS, Xie Y, Mao SH, Morizono K, Kung SK, Chen IS (2003) Efficient lentiviral vectors for short hairpin RNA delivery into human cells. Hum Gene Ther 14: 1207–1212.
  • Attisano L, Wrana JL (2002) Signal transduction by TGF-β superfamily. Science 296: 1646–1647.
  • Batuman OA, Ferrero A, Cupp C, Jimenez SA, Khalili K (1995) Differential regulation of transforming growth factor β-1 gene expression by glucocorticoids in human T and glial cells. J Immunol 155: 4397–4405.
  • Beck C, Schreiber H, Rowley D (2001) Role of TGF-β in immune- evasion of cancer. Microsc Res Tech 52: 387–395.
  • Benckert C, Jonas S, Cramer T, Von Marschall Z, Schafer G, Peters M, Wagner K, Radke C, Wiedenmann B, Neuhaus P, Hocker M, Rosewicz S (2003) Transforming growth factor β 1 stimulates vascular endothelial growth factor gene transcription in human cholangiocellular carcinoma cells. Cancer Res 63: 1083–1092.
  • Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, Gagliardini E, Rooli D, Zanchi C, Abbate M, Ledbetter S, Remuzzi G (2003) Add-on anti-TGF-β antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 14: 1816–1824.
  • Birchenall-Roberts MC, Ruscei FW, Kasper J, Lee HD, Friedman R, Geiser A, Sporn MB, Roberts AB, Kim SJ (1990) Transcriptional regulation of the transforming growth factor β 1 promoter by v-src gene products is mediated through the AP-1 complex. Mol Cell Biol 10: 4978–4983.
  • Biswas S, Chytil A, Washington K, Romero-Gallo J, Gorska AE, Wirth PS, Gautam S, Moses HL, Grady WM (2004) Transforming growth factor β receptor Type II inactivation promotes the establishment and progression of colon cancer. Cancer Res 64: 4687–4692.
  • Bogdahn U, Hau P, Brawanski A, Schlaier J, Mehdorn M, Wurm G, Pichler J, Kunst M, Stauder G, Schlingensiepen KH (2004) Specific therapy for high-grade glioma by convection-enhanced delivery of the TGF- β2 specific antisense oligonucleotide AP 12009. Am Soc Clin Oncol Ann Meet. Abstract 1514.
  • Bollard CM, Rossig C, Calonge MJ, Huls MH, Wagner HJ, Massague J, Brenner MK, Heslop HE, Rooney CM (2002) Adapting of transforming growth factor β- related tumor protection strategy to enhance antitumor immunity. Blood 99: 3179–3187.
  • Bottner M, Krieglstein K, Unsicker K (2000) The transforming growth factor-βs: structure, signaling, and roles in nervous system development and functions. J Neurochem 75: 2227–2240.
  • Chen ML, Piet MJ, Gorelik L, Flavell RA, Weissleder R, von Boehmer H, Khazaie K (2005) Regulatory T cells suppress tumor-specific CD8 T cell cytotoxicity through TGF-β signals in vivo. Proc Natl Acad Sci USA 102: 419–424.
  • Dai C, Yang J, Liu Y (2003) Transforming growth factor- β1 potentiates renal tubular epithelial cell death by a mechanism independent of Smad signaling, J Biol Chem 278: 12537–12545.
  • DaCosta Byfield S, Major C, Laping NJ, Roberts AB (2004) SB-505124 is a selective inhibitor of transforming growth factor β type I receptors ALK4, ALK5 and ALK7. Mol Pharmacol 65: 744–752.
  • Derynck R, Zhang YE (2003) Smad-dependent and Smadindependent pathways in TGF-β family signalling. Nature 425: 577–584.
  • Dong Y, Tang L, Leerio JJ, Benveniste EN (2001) The Smad3 protein is involved in TGF-β inhibition of class II transactivator and class II MHC expression. J Immunol 167: 311–319.
  • Dubois CM, Laprise MH, Blanchee F, Gentry LE, Leduc R (1995) Processing of transforming growth factor β 1 precursor by human furin convertase. J Biol Chem 270: 10618–10624.
  • Friese MA, Wischhusen J, Wick W, Weiler M, Eisele G, Steinle A, Weller M (2004) RNA interference targeting transforming growth factor β enhances NKG2D-mediated antiglioma immune response, inhibits glioma cell migration and invasiveness and abrogates tumorigenicity in vivo. Cancer Res 64: 7596–7603.
  • Geiser AG, Busam KJ, Kim SJ, Lafyatis R, O’Reilly MA, Webbink R, Roberts AB, Sporn MB (1993) Regulation of the transforming growth factor-β 1 and -β 3 promoters by transcription factor Sp1. Gene 129: 223–228.
  • Gorelik L, Flavell RA (2001) Immune-mediated eradication of tumors through the blockade of transforming growth factor β. Nat Med 7: 1118–1122.
  • Grainger DJ, Wakefield L, Bethell HW, Farndale RW, Metcalfe JC (1995) Release and activation of platelet latent TGF-β in blood clots during dissolution with plasmin.Nat Med 1: 932–937.
  • Grimm D, Pandey K, Kay MA (2005) Adeno-associated virus vectors for short hairpin RNA expression. Methods Enzymol 392: 381–405.
  • Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E (1999) Involvement of the p38 mitogen-activated protein kinase pathway in transforming growth factor-β-induced gene expression. J Biol Chem 274: 27161–27167.
  • Hjelmeland MD, Hjelmeland AB, Sathornsumetee S, Reese ED, Herbstreith MH, Laping NJ, Friedman HS, Bigner DD, Wang XF, Rich JN (2003) SB-431542, a small molecule transforming growth factor–β receptor antagonist, inhibits human glioma cell line proliferation and motility. Mol Cancer Ther 3: 737–745.
  • Hojo M, Morimoto T, Maluccio M, Asano T, Morimoto K, Lagman M, Shimbo T, Suthanthiran M (1999) Cyclosporine induces cancer progression by a cell-autonomous mechanism. Nature 6719: 530–534.
  • Hyytiainen M, Peninen C, Keski-Oja J (2004) Latent TGF- β binding proteins: extracellular matrix association and roles in TGF-β activation. Crit Rev Clin Lab Sci 41: 233–264.
  • Inge TH, Hoover SK, Susskind BM, Barre SK, Bear HD (1992) Inhibition of tumor-specific cytotoxic T-lymphocyte responses by transforming growth factor β 1. Cancer Res 52: 1386–1392.
  • Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, Laping NJ, Hill CS (2001) SB-431542 is a potent and specific inhibitor of transforming growth factor β superfamily Type I activin receptor-like kinase (ALK) receptors ALK4, ALK5 and ALK7. Mol Pharmacol 62: 65–74.
  • Jachimczak P, Bogdahn U, Schneider J, Behl C, Meixensberger J, Apfel R, Dorries R, Schlingensiepen KH, Brysch W (1993) The effect of transforming growth factor- β 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. J Neurosurg 78: 944–951.
  • Jachimczak P, Hessdorfer B, Fabel-Schulte K, Wismeth C, Brysch W, Schlingensiepen KH, Bauer A, Blesch A, Bogdahn U (1996) Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. Int J Cancer 65: 332–337.
  • Jennings MT, Pietenpol JA (1998) The role of transforming growth factor β in glioma progression. J Neurooncol 36: 123–140.
  • Jennings MT, Maciunas RJ, Carver R, Bascom CC, Juneau P, Misulis K, Moses HL (1991) TGF β 1 and TGF β 2 are potential growth regulators for low-grade and malignant gliomas in vitro: evidence in support of an autocrine hypothesis. Int J Cancer 49: 129–139.
  • Johansson N, Ala-aho R, Uio V, Grenman R, Fusenig NE, Lopez-Otin C, Kahari VM (2000) Expression of collagenase- 3 (MMP-13) and collagenase-1 (MMP-1) by transformed keratinocytes is dependent on the activity of p38 mitogen-activated protein kinase. J Cell Sci 113: 227–235.
  • Kaklamani VG, Hou N, Bian Y, Reich J, Offit K, Michel LS, Rubinstein WS, Rademaker A, Pasche B (2003) TGFβR1*6A and cancer risk: a meta-analysis of seven case-control studies. J Clin Oncol 21: 3236–3243.
  • Karsdal MA, Hjorth P, Henriksen K, Kirkegaard T, Nielsen KL, Lou H, Delaisse JM, Foged NT (2003) Transforming growth factor-β controls human osteoclastogenesis through the p38 MAPK and regulation of RANK expression. J Biol Chem 278: 44975–44987.
  • Kaur B, Tan C, Brat DJ, Post DE, Van Meir EG (2004) Genetic and hypoxic regulation of angiogenesis in gliomas. J Neurooncol 70: 229–243.
  • Kim SJ, Angel P, Lafyatis R, Haori K, Kim KY, Sporn MB, Karin M, Roberts AB (1990) Autoinduction of transforming growth factor β 1 is mediated by the AP-1 complex. Mol Cell Biol 10: 1492–1497.
  • Kim SJ, Park K, Koeller D, Kim KY, Wakefield LM, Sporn MB, Roberts AB (1992) Post-transcriptional regulation of the human transforming growth factor-β 1 gene. J Biol Chem 267: 13702–13707.
  • Kim ES, Kim MS, Moon A (2004) TGF-β-induced upregulation of MMP-2 and MMP-9 depends on p38 MAPK, but not ERK signaling in MCF10A human breast epithelial cells. Int J Oncol 25: 1375–1382.
  • Kuppner MC, Hamou MF, Bodmer S, Fontana A, de Tribolet N (1988) The glioblastoma-derived T-cell suppressor factor/ transforming growth factor β2 inhibits the generation of lymphokine-activated killer (LAK) cells. Int J Cancer 4: 562–567.
  • Kutz SM, Hordines J, McKeown-Longo PJ, Higgins PJ (2001) TGF-β1-induced PAI-1 gene expression requires MEK activity and cell-to-substrate adhesion. J Cell Sci 114: 3905–3914.
  • Lee YJ, Han Y, Lu HT, Nguyen V, Qin H, Howe PH, Hocevar BA, Boss JM, Ransohoff RM, Benveniste EN (1997) TGF-β suppresses IFN-gamma induction of class II MHC gene expression by inhibiting class II transactivator messenger RNA expression. J. Immunol 158: 2065–2075.
  • Lindholm D, Castren E, Kiefer R, Zafra F, Thoenen H (1992) Transforming growth factor-β 1 in the rat brain: increase aer injury and inhibition of astrocyte proliferation. J Cell Biol 117: 395–400.
  • Massague J, Woon D (2000) Transcriptional control by the TGFβ/Smad signaling system. EMBO J 19: 1745–1754.
  • Maeda H, Kuwahara H, Ichimura Y, Ohtsuki M, Kurakata S, Shiraishi A (1995) TGF-β enhances macrophage ability to produce IL-10 in normal and tumor-bearing mice. J Immunol 155: 4926–4932.
  • Mead AL, Wong TT, Cordeiro MF, Anderson IK, Khaw PT (2003) Evaluation of anti-TGF-β2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 44: 3394–3401
  • Mulder KM (2000) Role of Ras and Mapks in TGFβ signaling. Cytokine Growth Factor Rev 11: 23–35.
  • Muraoka RS, Dumont N, Rier CA, Dugger TC, Brantley DM, Chen J, Easterly E, Roebuck LR, Ryan S, Gotwals PJ, Koteliansky V, Arteaga CL (2002) Blockade of TGF- β inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest 109: 1551–1559.
  • Nakao A, Afrakhte M, Moren A, Nakayama T, Christian JL, Heuchel R, Itoh S, Kawabata M, Heldin NE, Heldin CH, Ten Dijke P (1997) Identification of Smad7, a TGFβ-inducible antagonist of TGF-β signalling. Nature 389: 631–635.
  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K, Ten Dijke P (1997) TGF-β receptor-mediated signalling through Smad2, Smad3 and Smad4. EMBO J 16: 5353–5362.
  • Oft M, Heider KH, Beug H (1998) TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Curr Biol 8: 1243–1252.
  • Platten M, Wick W, Weller M (2001) Malignant glioma biology: role for TGF-β in growth, motility, angiogenesis, and immune escape. Microsc Res Tech 52: 401–410.
  • Piek E, Heldin CH, Ten Dijke P (1999) Specificity, diversity, and regulation in TGF-β superfamily signaling. FASEB J 13: 2105–2124.
  • Prashar Y, Khanna A, Sehajpal P, Sharma VK, Suthanthiran M (1995) Stimulation of transforming growth factor-β 1 transcription by cyclosporine. FEBS Le 358: 109–112.
  • Ranges GE, Figari IS, Espevik T, Palladino MA Jr (1987) Inhibition of cytotoxic T cell development by transforming growth factor β and reversal by recombinant tumor necrosis factor α. J Exp Med 166: 991–998.
  • Rao JS (2003) Molecular mechanisms of glioma invasiveness: the role of proteases. Nat Rev Cancer 3: 489–501.
  • Ribeiro SM, Poczatek M, Schultz-Cherry S, Villain M, Murphy-Ullrich JE (1999) The activation sequence of thrombospondin-1 interacts with the latency-associated peptide to regulate activation of latent transforming growth factor-β. J Biol Chem 274: 13586–13593.
  • Sanchez-Elsner T, Botella LM, Velasco B, Corbi A, Aisano L, Bernabeu C ( 2001) Synergistic cooperation between hypoxia and transforming growth factor-β pathways on human vascular endothelial growth factor gene expression. J Biol Chem 276: 38527–38535.
  • Sawyer JS, Beight DW, Bri KS, Anderson BD, Campbell RM, Goodson T Jr, Herron DK, Li HY, McMillen WT, Mort N, Parsons S, Smith EC, Wagner JR, Yan L, Zhang F, Yingling JM (2004) Synthesis and activity of new aryl- and heteroaryl-substituted 5,6-dihydro-4Hpyrrollo[ 1,2-b]pyrozole inhibitors of the transforming growth factor β type I receptor kinase domain. BioMed Chem Le 14: 3581–3584.
  • Schlingensiepen KH, Bischof A, Egger T, Hafner M, Herrmuth H, Jachimczak P, Kielmanowicz M, Niewel M, Zavadova E, Stauder G (2004) The TGF-β1 antisense oligonucleotide AP 11014 for the treatment of non-small cell lung, colorectal and prostate cancer: Preclinical studies. Am Soc Clin Oncol Ann Meeting Abstract 3132.
  • Shah AH, Tabayoyong WB, Kundu SD, Kim SJ, Van Parijs L, Liu VC, Kwon E, Greenberg NM, Lee C (2002) Suppression of tumor metastasis by blockade of transforming growth factor β signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res 62: 7135–7138.
  • Shi Y, Massague J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113: 685–700.
  • Smyth MJ, Strobl SL, Young HA, Ortaldo JR, Ochoa AC (1991) Regulation of lymphokine-activated killer activity and pore-forming protein gene expression in human peripheral blood CD8+ T lymphocytes. Inhibition by transforming growth factor β. J Immunol 146: 3289–3297.
  • Souchelnytskyi S, Tamaki K, Engstrom U, Wernstedt C, Ten Dijke P, Heldin CH (1997) Phosphorylation of Ser465 and Ser467 in the C terminus of Smad2 mediates interaction with Smad4 and is required for transforming growth factor-β signalling. J Biol Chem 272: 28107–28115.
  • Sugano Y, Matsuzaki K, Tahashi Y, Furukawa F, Mori S, Yamagata H, Yoshida K, Matsushita M, Nishizawa M, Fujisawa J, Inoue K (2003) Distortion of autocrine transforming growth factor β signal accelerates malignant potential by enhancing cell growth as well as PAI-1 and VEGF production in human hepatocellular carcinoma cells. Oncogene 22: 2309–2321.
  • Tiscornia G, Singer O, Ikawa M, Verma IM (2003) A general method for gene knockdown in mice by using lentiviral vectors expressing small interfering RNA. Proc Natl Acad Sci USA 100: 1844–1848.
  • Uhl M, Aulwurm S, Wischhusen J, Weiler M, Ma JY, Almirez R, Mangadu R, Liu YW, Plaen M, Herrlinger U, Murphy A, Wong DH, Wick W, Higgins LS, Weller M (2004) SD-208, a novel of transforming growth factor β receptor kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Res 64: 7954–7961.
  • Ungefroren H, Lenschow W, Chen WB, Faendrich F, Kalthoff H (2003) Regulation of biglycan gene expression by transforming growth factor-β requires MKK6-p38 mitogen-activated protein kinase signaling downstream of Smad signaling. J Biol Chem 278: 11041– 11049.
  • Van Obberghen-Schilling E, Roche NS, Flanders KC, Sporn MB, Roberts AB (1988) Transforming growth factor β 1 positively regulates its own expression in normal and transformed cells. J Biol Chem 263: 7741–7746.
  • Ventura JJ, Kennedy NJ, Flavell RA, Davis RJ (2004) JNK regulates autocrine expression of TGF-β1. Mol Cell 15: 269–278.
  • Wang L, Zhu Y, Sharma K (1998) Transforming growth factor-β1 stimulates protein kinase A in mesangial cells. J Biol Chem 273: 8522–8527.
  • Wang L, Kwak JH, Kim SI, He Y, Choi ME (2004) Transforming growth factor-β1 stimulates vascular endothelial growth factor 164 via mitogen-activated protein kinase kinase 3-p38α and p38δ mitogen-activated protein kinase-dependent pathway in murine mesangial cells. J Biol Chem 279: 33213–33219.
  • Wick W, Plaen M, Weller M (2001) Glioma cell invasion: regulation of metalloproteinase activity by TGF-β. J Neurooncol 53: 177–185.
  • Won J, Kim H, Park EJ, Hong Y, Kim SJ, Yun Y (1999) Tumorigenicity of mouse thymoma is suppressed by soluble Type II transforming growth factor β receptor therapy. Cancer Res 59: 1273–1277.
  • Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N, Taniguchi T, Nishida E, Matsumoto K (1995) Identification of a member of the MAPKKK family as a potential mediator of TGF-β signal transduction. Science 270: 2008–2011.
  • Yoo Y, Ghiassi M, Jirmanova L, Balliet AG, Hoffman B, Fornace AJ Jr, Liebermann DA, Boinger EP, Roberts AB (2003) Transforming growth factor-β-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. J Biol Chem 278: 43001–43007.
  • Yue J, Sun B, Liu G, Mulder KM (2004) Requirement of TGF-β receptor-dependent activation of c-Jun N-terminal kinases (JNKs)/stress-activated protein kinases (Sapks) for TGF-β up-regulation of the urokinase-type plasminogen activator receptor. J Cell Physiol 199: 284–292.
  • Zagzag D, Salnikow K, Chiriboga L, Yee H, Lan L, Ali MA, Garcia R, Demaria S, Newcomb EW (2005) Downregulation of major histocompatibility complex antigens in invading glioma cells: stealth invasion of the brain. Lab Invest 85: 328–341.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-99f5b9ae-681e-4037-a637-7be3b2780060
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.