Warianty tytułu
Języki publikacji
Abstrakty
Maize and chickpea plants were grown in a controlled environment with 0.5 pM Zn or without Zn and various photosynthetic reactions were studied. The chlorophyll level, the rate of photosynthesis and photosystem II activity, the activity of carboxylating enzymes and that of carbonic anhydrase were suppressed by Zn deficiency in both plant species. Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) was quantified using polyacrylamide gel electrophoresis. Growing plants in a medium without Zn caused a decrease in the total protein level and in the levels of large and small subunits of Rubisco.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.445-451,fig.,ref.
Twórcy
autor
- National Research Centre, Cairo, Dokki-Egypt
autor
autor
autor
Bibliografia
- Aravind P., Prasad M.N.V. 2003. Zink alleviates cadmium-induced oxidative stress in Ceratophyllum demersim L.: a free-floating freshwater macrophyte. Plant Physiol. Biochem., 41: 391-397.
- Arnon DI. 1949. Cooper enzymes in isoiated chloroplasts. Polyphenol -oxidase in Beta vulgaris. Plant Physiol., 24: 1-15.
- Bettger W.J., O’Dell B.L. 1981. A critical physiological role of zinc in the struciure and function of bio i membranes. Life Sci., 28: 1425-1438.
- Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem., 2: 248-254.
- Cakmak I. 2000. Possible roles of zink in protecting plant cells from damage by reactive oxygen species. New Phytol., 146: 185-205.
- Cakmak I., Marshner H. 1988. Enhanced superoxide radical production in roots of zinc-deficient plants. J. Exp. Bot., 39:1449-1460.
- Cakmak I., Marshner H., Bangerth F. 1989. Effect of zinc nutritional status on growth, protein metabolism and levels of indoleacetic acid and other phytohormones in bean (Phaseolus vulgaris L.) J. Exp. Bot., 40: 405-412.
- Cakmak I., Yalmaz A., Kalayci M., Eekiz H., Torun B., Erenoglu B., Braun H.J. 1996. Zn deficiency as a critical problem in wheat production in central Antalia. Plant Soil, 180: 165-172.
- Coleman J.E. 1998. Zink enzymes. Curr. Opin. Chem. Biol., 2: 222-234.
- Del B., Wilson S.A. 1985. Zinc nutrition and leaf carbonic anhydrase activity of Eucalyptus maculate seedlings and Trifolium subterraneum. Plant Soil, 113: 287-290.
- El-Baz F.K., Salama Z.A., Mohamed A.A. 1996. Evaluation of catalase, carbonic anhydrase (CA), and aldolase activities and chlorophyll as indicators for Fe and Zn deficiency in snap bean and faba bean plants. J. Agric. Sci., Mansura Univ., 21: 2569-2581.
- Falchuk K.H., Hardy C., Ulpino L., Vallee B.L. 1978. RNA metabolism, manganese, and RNA polymerases of zinc sufficient and zinc deficient Euglena gracilis. Proc. Nat. Acad. Sci. USA, 75: 4175-4179.
- Garcia-Ferris C., Moreno J. 1994. Oxidative modification and breakdown of ribulose-1,5-bisphosphate carboxylase/oxygenase induced in Euglena gracilis. Planta, 93: 208-215.
- Hoagland D.R., Arnon D.I. 1950. The water-culture method of growing plants without soil. California Agriculture Experimental Station, circular 347. College of Agriculture, Univ. of California, Berkeley.
- Jyng W.H., Camp M.E., Polson D.E., Afams M.W., Witer S.H. 1972. Differential response of two varieties to zinc as revealed by electrophoretic protein pattern. Crop. Sci., 12: 26-29.
- Laemmli U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriofage. Nature 277: 680-685.
- Lane T.W., Morel F.M.M. 2000. Regulation of carbonic anhydrase expression by zink, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol., 123: 345-352.
- Maslenkova L., Zanev Yu., Popova L.P. 1993. Adaptation to salinity as monitored by PS II oxygen evolving reactions in bartey thylakoids. J. Plant Physiol., 142: 629-643.
- Miteva T.S., Zhelev N.Zh., Popova L.P. 1992. Effect of satintty on the synthesis of ribulose-1,5-carboxyla- se/oxygenase in bartey leaves. J. Plant Physiol., 140: 46-51.
- Ohki K. 1976. Effect of zinc nutrition onphotosynthesis and CA activity in cotton. Physiol. Plant., 38: 300-304.
- Okabe K., Yang S., Tsuzuki M., Miyachi S. 1984. Carbonic anhydrase: its content in spinach leaves and its taxonomic diversity studied with anti-spinach leaf carbonic anhydrase antibody. Plant Sci. Lett., 33: 145-153.
- Popova L.P., Tsonev T.D., Vaklinova S.G. 1987. A possible role for abscisic acid in regul at ion of photosynthetic and photorespiratory carbon metabotism in barley leaves. Plant Physiol., 83: 820-824.
- Popova L.P., Vaklinova S.G. 1988. Effect ofjasmonic acid on the synthesis of ribulose-1,5-carboxylase/oxygenase in barley leaves. J. Plant Physiol., 133: 210-215.
- Popova L.P., Tsonev T.D., Vaklinova S.G. 1988. Changes in some photorespiratory and photosynthetic properties in barley leaves after treatment withjasmonic acid. J. Plant Physiol., 132: 257-261.
- Powell S.R. 2000. The antioxidant properties of zink. J. Nutr., 130: 1447-1454.
- Prasad M.N.V. 2004. Heavy metal stress in plants- from molecules to ecosystems, (2nd ed.). Springer- Verlag, Heidelberg.
- Salama Z.A., Amberger A.A., El-Fouly M.M. 1997. Aldolase, carbonic anhydrase and catalase activtiy in faba bean leaves as affected by iron and zinc. Egyp. J. Physiol. Sci., 21: 31-39.
- Tsuzuki M., Miyachi S., Edwards G.E. 1985. Localization of carbonic anhydrase in mesophyll cells of terrestrial C3 plants in relation to CO2 assimilation- Plant Cell Physiol., 26: 881-891.
- Vallee B.L., Auld D.S. 1990. Zn coordination, function and structure of zinc enzymes and other proteins. Biochemistry, 29:5647-5659.
- Wilbur K.M., Anderson N.G. 1948. Electrometric and colorimetric determination of carbonic anhydrase. J. Biol. Chem., 1476: 147-154.
- Zago M.P., Oteiza P.I. 2001. The antioxidant properties of zinc: interactions with iron and antioxidants. Free Rad. Bio. Med., 31: 266-274.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-978f2c89-c222-449a-bab7-1c98e9fcc9c8