Warianty tytułu
Języki publikacji
Abstrakty
The nonallosteric regulation mechanism of enzyme reaction velocity assumes that the substrate and enzyme interact via a metal cation and form simple and mixed, mono- and multi-nuclear complexes. A solution of equations for individual cases gives a function of initial reaction velocity at any given substrate or modifier concentration. This function can describe kinetic effects that are considered allosteric, as well as phenomena omitted by commonly-accepted models.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.85-95,fig.
Twórcy
autor
- University of Opole, Kominka 4, 45-035 Opole, Poland
Bibliografia
- 1.Peitgen, H.-O., Jürgens, H. and Saupe D. Fractals for the Classroom. Part 1. Chapter 1. Springer-Verlag, New York (1992) 37-97.
- 2.London, W.P. and Steck, T.L. Kinetics of enzyme reactions with interaction between a substrate and a (metal) modifier. Biochemistry 8 (1969) 1767-1779.
- 3.Monod, J., Wyman, J. and Changeux, P. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12 (1965) 88-118.
- 4.Koshland, D.E., Nemethy, Jr. and Filmer, D. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5 (1966) 365-385.
- 5.Baranowska, B., Terlecki, G. and Baranowski, T. The influence of inorganic phosphate and ATP on the kinetics of bovine heart muscle pyruvate kinase. Mol. Cell. Biochem. 64 (1984) 45-50.
- 6.Baranowska, B. and Baranowski, T. Heart pyruvate kinase catalyses the synthesis of ATP from ADP and inorganic pyrophosphate. Bull. Ac. Pol. Biol. 35 (1987) 1-5.
- 7.Baranowska, B. and Baranowski, T. Kinetic properties of human muscle pyruvate kinase. Mol. Cell. Biochem. 45 (1982) 117-125.
- 8.Kuczek, M. A hypothetical model of the influence of inorganic phosphate on the kinetics of pyruvate kinase. Biosystems 54 (1999) 71-76.
- 9.Kuczek, M. Influence of inorganic pyrophosphate on the kinetics of muscle pyruvate kinase: A simple nonallosteric feedback model. Biosystems 66 (2002) 11-20.
- 10.Rao, G.S.J., Cook, P.F. and Harris, B.G. Kinetic characterization of a T-state of Ascaris suum phosphofructokinase with heterotropic negative cooperativity by ATP eliminated. Arch. Biochem. Biophys. 365 (1999) 335-343.
- 11.Zhu, Z., Ling, S., Yang, Q. H. and Li, L. Involvement of the chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase sequence His444-Arg-Glu-Arg in modulation of the bisphosphatase activity by its kinase domain. Biochem. J. 357 (2001) 513-20.
- 12.Yang, Q.H., Zhu, Z., Dong, M.Q., Ling S., Wu C.L. and Li, L. Binding of ATP to the fructose-2,6-bisphosphatase domain of chicken liver 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase leads to activation of its 6-phosphofructo-2-kinase. J. Biol. Chem. 276 (2001) 24608-13.
- 13.Skalecki, K., Mularczyk, W. and Dzugaj, A. Kinetic properties of D-fructose-l,6-bisphosphate 1-phosphohydrolase isolated from human muscle. Biochem. J. 310 (1995) 1029-1035.
- 14.Ozaki, I., Mitsui, Y., Sugiya, H. and Furuyama, S. Ribose 1,5-bisphosphate inhibits fructose-1,6-bisfosphatase in rat kidney cortex. Comp. Biochem. Phys. B. 125 (2000) 97-102.
- 15.Willemoes M., Hove-Jensen B. and Larsen S. Steady state kinetic model for the binding of substrates and allosteric effectors to Escherichia coli phosphoribosyl-diphosphate synthase. J. Biol. Chem. 275 (2000) 35408-12.
- 16.Vinogradov, V.V. and Strumilo, S.A. Mechanism of the activation of thiamine pyrophosphokinase from the rat liver by magnesium ions. Biochemistry (Moscow, Int Ed.) 44 (1979) 42-47.
- 17.Lee, L.P., and Kosicki, G.W. Effect of magnesium ions on coenzyme A and pyrophosphate derivatives inhibition of yeast glucose-6-phosphate dehydrogenase. Can. J. Biochem. 45 (1967) 1279-82.
- 18.Tsai, C.S. and Chen Q. Regulation of D-glucose-6-phosphate dehydrogenase from Schizosaccharomyces pombe. Biochem. Cell. Biol. 76 (1998) 645-8.
- 19.Salati, L.M. and Amir-Achmady, B. Dietary regulation of expression of glucose-6-phosphate dehydrogenase. Annu. Rev. Nutr. 24 (2001) 121-40.
- 20.Strumilo, S.A., Taranda, N.I., Senkevich, S.B. and Vinogradov, V.V. Kinetic properties of NADP-specific isocitrate dehydrogenase from bovine adenals. Biochemistry (Moscow, Int. Ed.) 52 (1987) 724-730.
- 21.Senkevich, S.B., Strumilo, S.A. and Vinogradov V.V. NADP-dependent malate dehydrogenase from bovine adrenal cortex cytoplasm. Purification and properties. Biochemistry (Moscow, Int.Ed.) 51 (1986) 891-897.
- 22.Strumilo, S., Czerniecki, J. and Dobrzyn, P. Regulatory effect of thiamin pyrophosphate on pig heart pyruvate dehydrogenase complex. Biochem. Biophys. Res. Commun. 256 (1999) 341-5.
- 23.Strumilo, S. and Markiewicz, J. Thiamine pyrophosphate as an effector of 2-oxoglutarate dehydrogenase complex from European bison heart. Biochem. Mol. Biol. Int. 37 (1995) 101-106.
- 24.Strumilo, S.A., Taranda, N.I. and Vinogradov, V.V. Role of phosphate ions and divalent metals in the regulation of activity of the α-ketoglutarate dehydrogenase complex of the adrenal cortex. Biochemistry (Moscow, Int.Ed.) 46 (1981) 156-161.
- 25.Wales, M.E., Madison, L.L., Glaser, S.S. and Wild, J.R. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. J. Mol. Biol. 294 (1999) 1387-1400.
- 26.Vinogradov, V.V., Iarotskii, Iu. V. and Mandrik, K. A. Kinetic model of the functioning of pyruvate kinase from bovine adrenal cortex. Biochemistry (Moscow, int.ed.) 53 (1988) 69-75.
- 27.Wedler, F. C., Denman, R.B. and Roby, W.G. Glutamine synthetase from ovine brain is a manganese(II) enzyme. Biochemistry 21 (1982) 6389-96.
- 28.Ali, L.Z. and Sloan, D.L. Activation of hypoxanthine/guanine phosphoribosyltransferase from yeast by divalent zinc and nickel ions. J. Inorg. Biochem. 28 (1986) 407-15.
- 29.Tsai, C.S., Shi, J.L. and Chen, Q. Kinetic studies of gluconate pathway enzymes from Schizosaccharomyces probe. Arch. Biochem. Biophys. 316 (1995)163-168.
- 30.Atkins, W.M., Wang, R.W. and Lu, A.Y.H. Allosteric behaviour in cytochrome P450-dependent in vitro drug-drug interactions: A prospective based on conformational dynamics. Chem. Res. Toxicol. 14 (2001) 338- 347.
- 31.Hübner, G. and Wolna, P. Nonlinear dynamic processes in open single enzyme systems. Biol. Chem. Hoppe-Seyler. 375 (1994) 31-34.
- 32.Richter, P.H. and Ross J. Oscillations and efficiency in glycolysis. Biophys. Chem. 12 (1980) 285-97.
- 33.Orlik, M. Reakcje oscylacyjne porządek i chaos. WNT Warszawa. (1996).
- 34.Kawczynski, A.L. Reakcje chemiczne od równowagi przez struktury dyssypatywne do chaosu. WNT Warszawa. (1990).
- 35.Scott, S.K. Chemical Chaos. Oxford University Press. P. (1994) 409-440.
- 36.Schramm, V.L. Enzymatic transition states and transition state analog design. Annu. Rev. Biochem. 67 (1998) 693-720.
- 37.Roussel; M.C. Slowly reverting enzyme inactivation: a mechanism for generating long-lived damped oscillations. J. Theor. Biol. 195 (1998) 233- 244.
- 38.Kato, T., Shimotohno, K. Estimation of kinetic parameters for substrate and inhibitor in a reaction with an enzyme sample containing different types of inhibitor. Biochim. Biophys. Acta 801 (1984) 157-162.
- 39.Plonka, A. Recent developments in dispersive kinetics. Prog. React. Kin. 25 (2000) 109-218.
- 40.Li, H., Chen, S., Zhao H. Fractal mechanisms for the allosteric effects of proteins and enzymes. Biophys. J. 58 (1990) 1313-1320.
- 41.Szabó, Z.G. Kinetic characterization of complex reaction systems. In Comprehensive Chemical Kinetics, (Bamford, C.H., Tipper, C.F.H. Eds.) Elsevier Publishing Company, Amsterdam, London, New York vol. 2 (1969) 74-75.
- 42.Luchter-Wasylewska, E. Cooperative kinetics of human prostatic acid phosphatase. Biochim. Biophys. Acta 36470 (2001) 1-8.
- 43.Savageau, M.A. Development of fractal kinetic theory for enzyme-catalysed reactions and implications for the design of biochemical pathways. Biosystems 47 (1998) 9-36.
- 44.VanDoren, V.J. Examining the fundamentals of PID control. Control. Eng. 43 (1996) 51-52.
- 45.Dittert, I., Vlachova, V., Knotkova, H., Vitaskova, Z., Vyklicky, L., Kress, M. Reeh, P.W. A technique for fast application of heated solutions of different composition to cultured neurones. J. Neurosci. Methods 82 (1998) 195-201.
- 46.Messner, B. and Tilbury, D. http://www.engin.umich.edu/group/ctm/PID
- 47. Williams, C.D.H. http://newton.ex.ac.uk/teaching/CDHW/feedback/ ControlTypes
- 48.Suga, H., Cowan, J.A. and Szostak, J. W. Unusual metal ion catalysis in an acyl-transferase ribozyme. Biochemistry 37 (1998) 10118-10125.
- 49.Vaidya, A. and Suga, H. Diverse roles of metal ions in acyl-transferase ribozymes. Biochemistry 40 (2001) 7200-7210.
- 50.Exley, C. and Korchazhkina, O. Promotion of formation of amyloid fibrils by aluminium adenosine triphosphate (A1ATP). J. Inorg. Biochem. 84 (2001) 215-224.
- 51.Exley, C. Schneider, C. and Doucet, F.J. The reaction of aluminium with silicic acid in acidic solution: An important mechanism in controlling the biological availability of aluminium? Coordin. Chem. Rev. (2002), in press.
- 52.Guan, Z.Z., Wang, Y.N., Xiao, K.Q., Dai, D.Y., Chen, Y.H. Liu, J.L., Sindelar, P. and Dallner, G. Influence of chronic fluorosis on membrane lipids in rat brain. Neurotoxicol. Teratol. 20 (1998) 537-42.
- 53.Graham, D.L., Lowe, P.N., Grime, G.W., Marsh, M., Rittinger, K., Smerdon, S.J., Gamblin, S.J. and Eccleston, J.F. MgF3 as a transition state analog of phosphoryl transfer. Chem. Biol. 9 (2002) 375-381.
- 54.Smith, R.M., Martel, A.M. and Chen, Y. Critical evaluation of stability constants for nucleotide complexes with protons and metal ions and accompanying enthalpy changes. Pure Appl. Chem. 63 (1991) 1015-1080.
- 55.Hammett, L.P. Physical Organic Chemistry. Reaction Rates, Equilibria, and Mechanisms. Chapter 5. McGraw-Hill Book Company, New York (1970).
- 56.Kettle, S.F.A. Physical Inorganic Chemistry. A Coordinational Chemistry Approach. Oxford University Press (1996).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-91e04196-768f-4a09-98e7-ffd6b9a3c263