Warianty tytułu
Języki publikacji
Abstrakty
α-Amylase has a wide range of applications in starch industries, i.e. baking, brewing, distillery, etc. The α-amylase production from Streptomyces erumpens MTCC 7317 immobilized cells was compared with that of free cells. The immobilized cells of S. erumpens in calcium alginate beads were more effective for production of α-amylase (12.2% more yield) than free cells. Response surface methodology (RSM) was used to evaluate the effect of main variables, i.e. incubation period, pH and temperature on enzyme production with immobilized cells. A full factorial Central Composite Design (CCD) was applied to study these main factors that affected α-amylase production. The experimental results showed that the optimum incubation period, pH and temperature were 36 h, 6.0 and 50°C, respectively for immobilized cells. Repeated batch fermentation of immobilized cells in shake flasks carried out in starch-beef extract medium showed that S. erumpens cells were physiologically active on the support even after four cycles of fermentation.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.49-57,fig.,ref.
Bibliografia
- Abd-El-Haleem D., U. Beshay, A. Abdelhamid, H. Moawad and S. Zaki. 2003. Effect of nitrogen sources on biodegration of phenol by immobilized Acinetobacter sp. strain W-17. Afr. Biotechnol. 2: 8-12.
- Adinarayana K., B. Jyothi and P. Ellaiah. 2005. Production of alkaline protease of Bacillus subtilis PE-11 in various matrices by entrapment technique. AAPS Pharma Sci. Tech. 6: 391-397.
- Adinarayana K., K.V.V.S.N. Bapi Raju and P. Ellaiah. 2004. Investigations on alkaline protease production with Bacillus subtilis PE-11 immobilized in calcium alginate gel beads. Process Biochem. 39: 1331-1339.
- Bashay U. 2003. Production of alkaline protease by Teredinobacter turnirae cells immobilized in Ca- alginate beads. Afr. J. Biotechnol. 2: 60-65.
- Bodalo A., J. Bastida, J.L. Gomez, I. Alcarz and M.L. Asaza. 1996. Immobilization of Pseuclomonas sp. BA2 by entrapment in calcium alginate and its application for the production of L- alanine. Enz. Microb. Technol. 19: 176-180.
- Boyaci I.H. 2005. A new approach of determination of enzyme kinetic constants using response surface methodology. Biochem. Eng. J. 25: 55-62.
- Carvalho J.C.M., M. Vitolo, S. Sato and E. Aquarone. 2003. Ethanol production by Saccharomyces cerevisiae grown in sugarcane blackstrap molasses through a feed batch process: optimization by response surface methodology. Appl. Biochem. Biotechnol. 110: 151-164.
- Carvalho W., S.S. Silva, A. Convcrti and M. Vitolo. 2002. Metabolic behavior of immobilized Candida guilliermondii cells during batch xylitol production from sugarcane bagasse acid hydrolyzate. Biotechnol. Bioeng. 79: 165-169.
- Demir N., J. Acar, K. Saryoolu and M. Muttu. 2001. The use of commercial pectinase in fruit juice industry, Part 3. Immobilized pectinase for mash treatment. J. Food Eng. 47: 275-280.
- Dey G., B. Singh and R. Banerjee. 2003. Immobilization of α-amylase produced by Bacillus circulans GRS 313. Braz. Arch. Biol. Technol. 46: 167-176.
- Dey S. and S.O. Agarwal. 1999. Characterization of a thermostable α-amylase from a thermophilic Streptoinyces inegasporus strain SD 12. Indian J. Biochem. Biophys. 36: 150-157.
- Dhanasekaran D., P. Sivamani, G. Rajakumar, A. Panncerselvam and N. Thajuddin. 2006. Studies on free and immobilized cells of Bacillus species on the production of α-amylase. Internet J. Microbiol. 2: 1-3.
- Dinnella C, A. Stagni, G. Lanzarini and M. Laus. 1996. Immobilized pectinase efficiency in the depolymerization of pectin in a model solution and apple juice. Prog, Biotechnol. 14: 971-978.
- Dobreva E., A. Tonkova, V. Ivanova, M. Stfanova, L. Kabivanova and D. Spasova. 1998. Immobilization of Bacillus licheniformis cells, producers of thermostable α-amylase on polymer membranes. J. Ind. Microbiol. 20: 166-170.
- Gupta R., P. Gigras, H. Mohapatra, V.K. Goswami and B. Chauhan. 2003. Microbial α-amylases: a biotechnological perspective. Process Biochem. 38: 1599-1616.
- Haki G.D. and S.K. Rakshit. 2003. Developments in industrially important thermostable enzymes. Review. Biores. Technol. 89: 17-34.
- He G.Q., Q. Kong and L.X. Ding. 2004. Response surface methodology for optimizing the fermentation medium of Clostridium hutyricum. Lett. Appl. Microbiol. 39: 363-368.
- Heese O., G. Hansen, W.E. Hohne and D. Korner. 1991. A thermostable α-amylase from Thermoactinomyces vulgaris: purification and characterization. Biomed. Biochem. Acta 5: 225-32.
- John R.P., K.M. Nampoothiri and A. Pandey. 2007. Production of L(+) lactic acid from cassava starch hydrolysate by immobilized Lactobacillus delbrueckii. J. Basic Microbiol. 47: 25-30.
- Kar S. and R.C. Ray. 2006. Isolation and characterization of thermostable α-amylase producing, Streptomyces spp. pp. 15-20. In: Mohanty R.C. and P.K.Chand (eds.). National Seminar on Microbes in Our Lives, Department of Botany, Utkal University, Bhubaneswar, India.
- Kar S. and R.C. Ray. 2008. Partial characterization and optimization of extracellular thermostable Ca²⁺ inhibited α-amylase production by Streptomyces erumpens MTCC 7317.J. Sci. Ind. Res. 67: 58-64.
- Kourkoutas Y., A. Bekatorou, I.M. Banat, R. Marchant and A.A. Koutinas. 2004. Immobilization technologies and support material's suitable in alcohol beverages production. Food Microbiol. 21: 377-397.
- Kunamneni A. and S. Singh. 2005. Response surface optimization of enzymatic hydrolysis of maize starch for higher glucose production. Biochem. Eng. J. 27: 179-190.
- Pandey A., P. Nigam, C.R. Soecol, V.T. Soecol, D. Singh and R. Mohan. 2000. Advances in microbial amylase. Biotechnol. Appl. Biohem. 31: 135-152.
- Rao J.L.M. and T. Satyanarayana. 2003. Statistical optimization of a high maltose-forming, hyperthermostable and Ca²⁺ -indipendent α-amylase production by an extreme thermophile Geobacillus thermoleovorans using response surface methodology. J. Appl. Microbiol. 95: 712-718.
- Rao P.V., K. Jayaraman and CM. Lakshmanan. 1993. Production of lipase by Candida rugosa in solid-state fermentation, medium optimization and effect of aeration. Process Biochem. 28: 391-395.
- Sanchez E.N., E.M. Alhadeff, M.H.M. Rocha-Leao, R.C. Fernandes and Jr. N. Pereira. 1996. Performance of a continuous bioreactor with immobilized yeast cells in the ethanol fermentation of molasses stillage medium. Biotech. Lett. 18: 91-95.
- Selvakumar P., L. Ashakumary and A. Panday. 1994. Microbial fermentations with immobilized cells. J. Sci, Ind. Res. 55: 443-449.
- Senanayake S.P.J.N and F. Shahidi. 2002. Lipase catalysed incorporation of docosahexaenoic acid (DHA) into borage oil: optimization using sesponse surface methodology. Food Chem. 77: 115-123.
- Stefanova M., A. Tonkova, E. Dobreva and D. Spasova. 1998. Agargel immobilization of Bacillus brevis cells for production of thermostable α-amylase. Folia Microbiol. 43: 42-46.
- Swain M.R., S. Kar, A.K. Sahoo and R.C. Ray. 2007. Ethanol fermentation of mahula (Madhuca latifolia L.) flowers using free and immobilized yeast Saccharomyces cerevisiae. Microbiol. Res. 162: 93-98.
- Swain M.R., S. Kar, G. Padmaja and R.C. Ray. 2006. Partial characterization and optimization of production of extracellular α-amylase from Bacillus subtilis isolated from culturable cowdung microflora. Pol. J. Microbiol. 55: 289-296.
- Tonkova A. 2006. Microbial starch converting enzymes of the α-amylase family, pp. 421-472. In: Ray R.C. and O.P. Wards (eds.). Microbial Biotechnology in Horticulture, Volume 1, Science Publishers, Enfield, New Hampshire, USA.
- Xiong C, C. Shouwen, S. Ming and Y. Ziniu. 2005. Medium optimization by response surface methodology for poly-Y-glutamic acid production using dairy manure as the basis of a solid substrate. Appl. Microbiol. Biotechnol. 69: 390-396.
- Yang S.S. and J.Y. Wang. 1999. Protease and amylase production of Streptomyces rimosus in submerged and solid state cultivations. Bot. Bull. Acad. Sin. 40: 259-265.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-8d3aa91e-176f-43e5-9406-99c02de62187