Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 20 | 4 |
Tytuł artykułu

Implication of ABA and proline on cell membrane injury of water deficit stressed barley seedlings

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to examine the ability of ABA and proline to counteract the deleterious effect of water deficit stress on cell membrane injuries. Six-day-old seedlings of two barley genotypes (cv. Aramir, line R567) were treated with ABA (2·10⁻⁴ M) or proline (0.1 M) for 24 h, and then subjected to osmotic stress for 24h, by immersing their roots in polyethylene glycol (PEG 6000) solution of osmotic potential of −1.0 MPa and −1.5 MPa or by submerging the leaf pieces in PEG solution of osmotic potential of −1.6 MPa. Pretreatment of plants with ABA and proline caused an increase of free proline level in the leaves. Plants treated with ABA exhibited a lower membrane injury index under water stress conditions than those untreated even when no effect of this hormone on RWC in the leaves of stressed plants was observed. Pretreatment of plants with proline prevented to some extent membrane damage in leaves of the stressed seedlings, but only in the case when stress was imposed to roots. Improvement in water status of leaves was also observed in seedlings pretreatment with proline. The protective effect of both ABA and proline was more pronounced in line R567 that exhibited higher membrane injury under water deficit stress conditions.
Słowa kluczowe
Wydawca
-
Rocznik
Tom
20
Numer
4
Opis fizyczny
p.375-381,fig.
Twórcy
autor
  • Agricultural University, Wolynska 35, 60-637 Poznan, Poland
Bibliografia
  • Alia, Pardha Saradhi I. P., Mohanty P. 1993. Proline in relation to free radical production in seedlings of Brassica junce raised under chloride stress. Plant and Soil 155/156: 497–500.
  • Bandurska H. 1991. The effect of proline on nitrate reductase activity in water-stressed barley leaves. Acta Physiol. Plant., 13: 3–11.
  • Bandurska H., Gniazdowska-Skoczek H. 1995. Cell membrane stability in two barley genotypes under water stress conditions. Acta Soc. Bot. Pol., 64: 29–32.
  • Bandurska H., Stroiński A., Zielezińska M. 1997. Effects of water deficit stress on membrane properties, lipid peroxidation and hydrogen peroxide metabolism in the leaves of barley genotypes. Acta Soc. Bot. Pol., 66: 177–183.
  • Bates L.S., Waldren R.P., Teare J.D., 1973. Rapid determination of proline for water stress studies. Plant and Soil., 39: 205–207.
  • Blum A. 1988. Plant Breeding for Stress Environments. Boca Raton, FL, USA: CRC Press.
  • Blum A. 1989. Osmotic adjustment and growth of barley genotypes under drought stress. Crop Sci., 29: 230–233.
  • Bohnert H.J., Jensen R.G. 1996. Strategies for engineering water-stress tolerance in plants. TiBTech., 14: 89–97.
  • Bray E. 1997. Plant responses to water deficit. TiPS, 2: 48–54.
  • Chowdhury S.R., Choudhuri M.A. 1989. Effects of CaCl₂ and ABA on changes in H₂O₂ metabolism in two jute species under water deficit stress. J. Plant Physiol., 135: 179–183.
  • Cornish K., Zeevart A.D. 1985. Movement of abscisic acid into appoplast in response to water stress in Xanthium strumarium L. Plant Physiol., 78: 623–626.
  • Creelman R.A., Mullet J.E. 1991. Abscisic acid accumulates at positive turgor potential in excised soybean seedlings growing zone. Plant Physiol., 95: 1200–1213.
  • Dashek W.V., Ericson S. 1981. Isolation, assay, biosynthesis, metabolism, uptake and translocation and function of proline in plant cells and tissues. Bot. Rev., 47: 349–385.
  • Delauney A.J., Verma D.P.S. 1993. Proline biosynthesis and osmoregulation in plants. The Plant J, 4: 215–223.
  • Galli M.G., Levi M., 1982. Increased drought resistance induced by pretreatment with abscisic acid in germinating embryos of Haplopapus gracilis. Physiol. Plant., 54: 425–430.
  • Hetherignton A.M., Quatrano R.S. 1991. Mechanisms of action of abscisic acid at cellular level. New Phytol., 119: 9–32.
  • Kacperska A. 1995. Udział hormonów roślinnych w odpowiedzi roślin na stresowe czynniki środowiska. Kosmos 44: 623–637 (in Polish).
  • Kavi Kishor P.B., Zanglie Hong, Guo-Hua Miao, Chien-An A. Hu, Desh Pal S. Verma. 1995. Overexpression of Δ¹-pyrroline-5-carboxylase synthetase increases proline production and confers osmotolerance in transagenic plants. Plant Physiol., 108: 1387–1394.
  • Levitt J. 1980. Responses of plants to environmental stresses, pp 3–211, vol II. Water, radiation, salt and other stresses. Acad Press New-York.
  • Ludwig M., Dörfling k., Seifert H. 1988. Abscisic acid and water transport in sunflowers., Planta 175: 325–333.
  • Mukherjee S.P., Choudhuri M.A. 1985. Implication of hydrogen peroxide-ascorbate system on membrane permeability of water stressed Vigna seedlings. New Phytol., 99: 355–360.
  • Nikolopoulos D., Manetas Y. 1991. Compatible solutes and in vitro stability of Salosa soda enzymes: Proline incompatibility. Phytochem. 30: 411–413.
  • Paleg L.G., Stewart G.R., Bradber J.W. 1984. Proline and glycine betaine influence protein solvation. Plant Physiol., 75: 974–978.
  • Pastori G.M., Trippi V.S. 1993. Cross resistance between water and oxidative stress in wheat leaves. J. Agric. Sci. Cambridge, 120: 289–294.
  • Quarrie S. A., 1991. Implication of genetic differences in ABA accumulation for crop production. In: Abscisic Acid: Physiology and Biochemistry. Eds: W.J. Davis, E.G. Jones; Bios.Sci.Publ., 227–243.
  • Rajagopal V. 1981. The influence of exogenous proline on stomatal resistance in Vicia faba., Physiol. Plant., 52: 292–296.
  • Reynolds T.L., Bewley J.D. 1993. Abscisic acid enhances the ability of the desiccation-tolerant fern Polypodium virginianum to withstand drying. J. Exp. Bot., 44: 1771–1779.
  • Ristic Z., Gifford. J., Cass D.D. 1992. Dehydration, damage to the plasma membrane and tylakoids and heat-shock proteins in lines of maize differing in endogenous levels of abscisic acid and drought resistance. J. Plant Physiol., 139: 467–473.
  • Rensburg L. van, Krüger G.H.J., Krüger K H. 1993. Proline accumulation as drought-tolerance selection criterion: its relationship to membrane integrity and chloroplast ultrastructure in Nicotiana tabacum L. J. Plant Physiol., 141: 188–194.
  • Rhodes D., Handa S., Bressan R.A. 1986. Metabolic changes associated with adaptation of plant cells to water stress. Plant Physiol., 82: 890–903.
  • Rudolph A.S., Crow J.H., Crow L.M. 1986. Effects of three stabilizing agents-proline, betaine and trehalose on membrane phospholipids. Arch. Biochem. Biophys., 245: 134–143.
  • Schobert A.B., Tschesche H. 1978. Unusual solution properties of proline and its interaction with proteins. Biochem. Biophys. Acta, 541; 270–277.
  • Sgherri C.L., Pinzino C., Navari-Izzo F. 1993. Chemical changes and O₂- production in tylakoid membranes under water stress. Physiol. Plant. 87:211–213.
  • Singh N.K., Nelson D.E., Kuhn D., Hasegawa P.M., Bressan R.A. 1989. Molecular cloning of osmotin and regulation of its expression by ABA and adaptation to low water potential. Plant Physiol., 90: 1096–1101.
  • Sinha S., Rajagopal V. 1980. Influence of exogenous supplied proline on relative water content in wheat and barley. Indian J. Exp. Biol., 18: 1523–1524.
  • Smirnoff N., Cumbes Q.J. 1989. Hydroxyl radical scavenging activity of compatible solutes. Phytochem., 28: 1057–1060.
  • Stewart C.R., 1980. The mechanism of abscisic acid-induced proline accumulation in barley leaves. Plant Physiol. 66:230–233.
  • Stewart C.R., Voetberg G. 1985. relationship between stress-induced ABA and proline accumulations and ABA induced proline accumulations in excised barley leaves. Plant Physiol., 83: 747–749.
  • Sullivan C.Y., 1971. Technique for measuring plant drought stress. In: Drought Injury and Resistance in Crops. (ed.) K.I. Larson & J.D. Eastin, Madison, Wisconsin; Crop Science Society of America, 1–18.
  • Schwab K.B., Gaff D.F. 1992. Influences of compatible solutes on soluble enzymes from desiccation-tolerant Sporobolus stapfianus and desiccation-sensitive Sporobolus pyramidalis. J. Plant Physiol., 137:208–215.
  • Voetberg G.S., Sharp R.E. 1991. Growth of the maize primary root at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiol., 96: 1125–1130.
  • Weatherly P.E. 1950. Studies in water relation of cotton plants. I. The field measurement of water deficits in leaves. New Phytol., 49: 81–97.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-8a0b55ca-c6ca-4d43-88c5-c0c0c2608884
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.