Czasopismo
Tytuł artykułu
Warianty tytułu
Badania chemiczne tkanek kalusowych rozenca gorskiego [Rhodiola rosea L.] poddanych biotransformacji
Języki publikacji
Abstrakty
The main aim of this study was to search the influence of exogenous addition of rosavin precursor: cinnamyl alcohol on the enhancing of rosavins content in callus culture of R. rosea, cultured on solid and liquid media (CCA). This is the first report – according to available literature – which concerns its biotransformation on solid medium conditions. The two strains of R. rosea tissue cultures showed different ability of cinnamyl alcohol glycosides production: both of them produced rosin (with or without supplementation), but the obtained level of rosavin production was notable higher in case of supplementation of the strain induced from axially buds of R. rosea. The exogenous cinnamyl alcohol was added into medium at concentration of 2.5 mM/L or 5 mM/L in the day of the inoculation. The application of 2.5 mM cinnamyl alcohol resulted in the increase of rosin content in the callus started from hypocotyle to very high levels: 1056.183 mg/100 g on solid medium and 776.330 mg/100 g in liquid medium. The content of rosavin showed the same growing tendency, but the final concentration of this phenylopropanoid in the supplemented callus tissue was about 7 times lower as compared to the roots of intact plant (63.603 mg/100 g). Addition of cinnamyl alcohol also enhanced rosarin biosynthesis but only in small amount: to 4.896 mg/100 g on solid medium. Callus tissue obtained from axially buds and treated by cinnamyl alcohol (2.5 mM) produced rosavin in a higher concentration: 92.801 mg/100 g and reached one fifth part of the amount produced by roots. The process of supplementation with cinnamyl alcohol influenced the enhanced biosynthesis of another bioactive substances as well (salidroside, tyrosol, chlorogenic acid). The obtained results confirmed that even on a solid medium the callus tissue can produce the characteristic active substances and the concentration of some of them, mainly rosin and rosavin, can be significantly improved by addition of the precursors to the medium.
Celem prowadzonych prac było określenie wpływu alkoholu cynamonowego (prekursor rozawin) dodanego do pożywki na produkcję rozawin w kulturach kalusowych Rhodiola rosea L. na pożywkach stałych i płynnych (agregaty CCA). Jest to pierwsze – według dostępnej literatury – doniesienie dotyczące biotransformacji na pożywce stałej. W badaniach posłużono się dwiema liniami różeńca górskiego, które wykazywały różną zdolność do produkcji glikozydów alkoholu cynamonowego. Obie linie produkowały rozynę (niezależnie od suplementacji), lecz w wyniku biotransformacji linia otrzymana z pączków bocznych syntetyzowała rozawinę w znacznie większym stopniu. Alkohol cynamonowy dodawano do pożywek w stężeniach: 2,5 mM i 5 mM w pierwszym dniu hodowli. Po dodaniu 2,5 mM alkoholu cynamonowego do pożywki stwierdzono bardzo wysoki wzrost zawartości rozyny w kalusie pochodzącym z hypokotyla (1056,183 mg/100 g) na pożywce stałej i płynnej (776,330 mg/100 g). Zaobserwowano również wzrost stężenia rozawiny, ale ostateczne stężenie tego fenylopropanoidu w tkance kalusowej było około 7 razy niższe niż w korzeniach roślin gruntowych (63,603 mg/100 g). Dodatek alkoholu cynamonowego zwiększał również zawartość rozaryny, lecz w niewielkim stopniu: 4,896 mg/100 g. Największe stężenie rozawiny otrzymano w kalusie z linii hypokotyl (92,801 mg/100 g) traktowanym 2,5 mM alkoholem cyna87 monowym, co odpowiada jednej piątej zawartości rozawiny produkowanej w korzeniach roślin gruntowych. Biotransformacja alkoholem cynamonowym wpłynęła na wzmożoną biosyntezę innych związków czynnych, takich jak salidrozyd, tyrozol i kwas chlorogenowy. Otrzymane wyniki potwierdzają, że kalus rosnący na pożywce stałej jest zdolny do produkcji związków czynnych charakterystycznych dla gatunku, a większe stężenie niektórych z nich, głównie rozyny i rozawiny, można uzyskać poprzez dodanie prekursorów do pożywki.
Twórcy
autor
- Research Institute of Medicinal Plants, Libelta 27, 61-707 Poznan, Poland
autor
autor
autor
autor
autor
autor
autor
autor
autor
Bibliografia
- 1. Kurkin V, Zapesochnaya G. Chemical composition and pharmacological properties of Rhodiola sp. Plants Review. Khim-Farm Zh 1986; 20:1231.
- 2. Z apesochnaya G, Kurkin V. Cinnamic glycosides of Rhodiola rosea rhizomes. Khim Prirod Soed 1982; 6:723.
- 3. Kiryanov A, Bondarenko L, Kurkin V, Zapesochnaya G et al. Determination of biologically active constituents of Rhodiola rosea rhizomes. Kim-Prir Soedin 1991; 3:320.
- 4. Furmanowa M, Kędzia B, Hartwich M, Kozłowski J, Krajewska-Patan A, Mścisz A, Jankowiak J. Phytochemical and pharmacological properties of Rhodiola rosea L. Herba Pol 1999; 45:108-13.
- 5. Kurkin V, Zapesochnaya G, Klyaznika V. Rhodiola rosea rhizome flavonoids. Khim Prir Soedin 1982; 5:581.
- 6. Dubichev A, Kurkin W, Zapesochnaya G, Vorontsov V. HPLC study of Rhodiola rosea rhizomes. Khim PrirSoedin 1991; 2:188.
- 7. Kurkin V, Zapesochnaya GG , Kiryanov AA et al. Quality of raw Rhodiola rosea L. material. Khim-Farm Zh 1989; 23:11.
- 8. A nilakumar PKR, Khanum F, Bawa AS . Phytoconstituents and antioxidant potency of Rhodiola rosea - a versatile adaptogen. J Food Chem 2006; 30:203-14.
- 9. A kgul Y, Ferreira D, Abourashed EA , Khan IA . Lotaustralin from Rhodiola rosea roots. Fitoterapia 2004; 75:612-4.
- 10. R ohloff J. Volatiles from rhizomes of Rhodiola rosea L. Phytochem 2002; 59:655-61.
- 11. Z apesochnaya GG , Kurkin VA. Glycosides of cynnamyl alcohol from rhizomes of Rhodiola rosea. Chem Nat Comp 1983; 18:685-8.
- 12. Kurkin VA, Zapesochnaya GG , Gorbunov YN, Nukhimovskii EL , Shreter AI , Schavlinskii AN. Chemical investigations on some species of Rhodiola L. and Sedum L. genera and problems of their taxonomy. Rastitel’nye Resursy 1986; 22:310-19.
- 13. T olonen A, György Z, Pakonen M, Neubauer P, Hohtola A. LC/MS /MS Identyfication of glucosides produced by biotransformation of cinnamyl alcohol in Rhodiola rosea compact callus aggregates. Biomed Chromatogr 2004, 18:550-8.
- 14. G yörgy Z. Glucoside production by in vitro Rhodiola rosea cultures. Acta Universitatis Ouluensis C Technica 244. Oulu 2006.
- 15. S alnik BU . Effect on several stimulators on central nervous system energy metabolism during muscular workload [dissertation]. Tomsk 1970.
- 16. S aratikov A, Marina TF, Fisanova LL . Effect of golden root extract on processes of serotonin synthesis in CNS. J Biol Sci 1978; 6:142.
- 17. Krajewska-Patan A, Mikołajczak PŁ, Okulicz-Kozaryn I, Bobkiewicz-Kozłowska T, Buchwald W, Łowicka A, Furmanowa M, Dreger M, Górska-Paukszta M, Mścisz A, Mrozikiewicz PM. Rhodiola rosea extracts from roots and callus tissues – study on relationship between their chemical contents and CNS affecting pharmacological activity. 11th International Congress of Polish Herbal Committee. Poznań, June, 24-25 2005. Herba Pol 2005; 51(Suppl. 1):105-6.
- 18. L azarova MB , Markovska VL, Petkov VV, Mosharrof A. Effects of meclofenoxate and extr. Rhodiola rosea L. on electroconvulsive shock – impaired learning and memory in rats. Methods Find Exp Clin Pharmacol 1986; 8:547-52.
- 19. Darbinyan V, Kteyan A, Panossian A et al. Rhodiola rosea in stress induced fatigue: a double blind cross – over study of a standarized extract SHR -5 with a repeated low – dose regiment on the mental performance of healthy physicians during night duty. Phytomedicine 2000; 7:365-71.
- 20. S pasov AA , Wilkman GK, Mandrikov VB et al. A double-blind, placebo-controlled pilot study of the stimulating and adaptogenic effect of Rhodiola rosea SHR -5 extract on the fatigue of students caused by stress during an examination period with a repeated low-dose regimen. Phytomedicine 2000; 7:85-9.
- 21. B oon-Niermeijer EK, van der Berg A, Wikman G, Wiegant FA. Phyto-adaptogens protect against environmental stress-induced death of embryos from freshwater snail Lymnaea stagnalis. Phytomedicine 2000; 7:389-99.
- 22. Kelly GS . Rhodiola rosea: a possible plant adaptogen. Altern Med Rev 2001; 6:293.
- 23. Panossian A, Wagner H. Stimulating effect of adaptogens: an overview with particular reference to their efficacy following single dose administration. Phytother Res 2005; 19:819-38.
- 24. S pasow AA , Mandrikov VB, Mironova IA . The effect of preparation rhodiosin on the psychophysiological and physical adaptation of students to an academic load. Eks Klin Farmakol 2000; 63:76-8.
- 25. M aslova LV, Kondratev BI , Maslov LN et al. The cardioprotective and antiadrenergic activity of an extract of Rhodiola rosea in stress. Eks Klin Farmakol 1994; 57:61-3.
- 26. U dintsev SN, Shakhov VP. Decrease of cyclophosphamide haematotoxity by Rhodiola rosea root eextract in mice with Ehrlich and Lewis transplantable tumors. Eur J Cancer 1991; 27:1182.
- 27. U dintsev SN, Krylova SG , Fomina TI . The enhancement of the efficacy of adriamycin by using hepatoprotectors of plant origin in metastases of Ehrlich’s adenocarciroma to the liver in mice. Vopr Oncol 1992; 38:1217-22.
- 28. Furmanowa M, Skopińska-Różewska E, Rogala E, Hartwich M, Rhodiola rosea L. in vitro culture – phytochemical analysis and antioxidant action. Acta Soc Bot Pol 1998; 67:69.
- 29. B attistelli M, De Sanctis R, De Bellis R, Cucchiarini L, Dacha M, Gobbi P, Rhodiola rosea as antioxidant in red blood cells: ultrastructural and hemolytic behaviour. Eur J Histochem 2005; 49:243-54.
- 30. Furmanowa M, Starościak B, Lutomski J, Kozłowski J, Urbańska N, Krajewska-Patan A, Pietrosiuk A, Szypuła W. Antimicrobial effect of Rhodiola rosea L. roots and callus extracts on some strains of Staphylococcus aureus. Herba Pol 2002; 48:23.
- 31. Krajewska-Patan A, Kędzia B, Dreger M, Mścisz A, Buchwald W, Furmanowa M, Mrozikiewicz PM. Antimicrobial activity of Rhodiola rosea extracts. Proceeding of 7th Congress of the European Association r Clinical Pharmacology and Therapeutics; 2005, 25-29 June, Poznań, Poland. Abstract Book. Bas Clin Pharm Toxicol 2005; 97(Suppl.1):38.
- 32. M ichalska M, Alfermann AW , Furmanowa M. Rosavins as a product of glucosylation by Rhodiola rosea Cell Suspension Cultures. 45Th Annual Congress of the Society for Medicinal Plant Research. Regensburg (Germany), 7–12 Sep. 1997, Poster L12.
- 33. Furmanowa M, Hartwich M, Alferman AW , Koźmiński W, Olejnik M. Rosavins as a product of glucosylation by Rhodiola rosea (roseroot) cell cultures. Plant Cell Tiss Organ Cult 1999; 56:105-10.
- 34. Furmanowa M, Hartwich M, Alferman AW , Koźmiński W, Olejnik M. Rosavins as a product of glucosylation by Rhodiola rosea (roseroot) cell cultures. Plant Cell Tiss Organ Cult 1999; 56:105-10.
- 35. Furmanowa M, Hartwich M, Alferman AW . Glucosylation of p-tyrosol to salidroside by Rhodiola rosea L. cell cultures. Herba Pol 2002; 48:71-6.
- 36. Krajewska-Patan A, Mrozikiewicz PM, Mścisz A, Dreger M, Górska-Paukszta M, Łowicka A, Buchwald W, Mielcarek S. Biotransformation of p-tyrosol by callus tissue of Rhodiola rosea L. 5th International of Symposium on Chromatography of Natural Products. Lublin (Poland), June, 9-22, 2006. Book of Abstracts:135.
- 37. Krajewska-Patan A, Furmanowa M, Dreger M, Górska-Paukszta M, Łowicka A, Mścisz A, Mielcarek , Baraniak M, Buchwald W, Mrozikiewicz PM. Enhancing the biosynthesis of salidroside by biotransformation of p-tyrosol in callus culture of Rhodiola rosea L. Herba Pol 2007; 53:55-64.
- 38. G yörgy Z, Tolonen A, Pakonen M, Neubauer P, Hohtola A. Enhancing the production of cinamyl glucosidesin compact callus aggregate cultures of Rhodiola rosea by biotransformation of cinnamyl alcohol. Plant Sci 2004 166:229-36.
- 39. G yörgy Z, Tolonen A, Neubauer P, Hohtola A. Enhanced biotransformation capacity of Rhodiola rosea callus cultures for glycoside production. Plant Cell Tiss Organ Cult 2005; 83:129-35.
- 40. M urashige T, Skoog F. A revised medium for rapid growth and bioassays with tabacco cultures. Physiol Plant 1962; 15:473.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-87c686b0-5dc8-40ea-ab7d-135790870463