Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1998 | 45 | 1 |
Tytuł artykułu

Repair of DNA alkylation damage

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Alkylation damage of DNA is one of the major types of insults which cells must repair to remain viable. One way alkylation damaged ring nitrogens are repaired is via the Base Excision Repair (BER) pathway. Examination of mutants in both BER and Nucleotide Excision Repair show that there is actually an overlap of repair by these two pathways for the removal of cytotoxic lesions in Escherichia coli. The enzymes removing damaged bases in the first step in the BER pathway are DNA glycosylases. The coding sequences for a number of methylpurine-DNA glycosylases (MPG proteins) were cloned, and a comparison of the amino-acid sequences shows that there are some similarities between these proteins, but nonetheless, compared to other DNA glycosylases, MPG proteins are more divergent. MPG proteins have been purified to homogeneity and used to identify their substrates ranging from methylating agents to deamination products to oxidatively damaged bases. The ligation-mediated polymerase chain reaction has been used to study the formation of alkylation damage, and its repair in mammalian cells. We have studied DNA damage in the PGK1 gene for a series of DNA alkylating agents including N-methyl-N'-nitro-N-nitrosoguanidine, Mechlorethamine, and Chlorambucil and shown that the damage observed in the PGK1 (phosphoglycerate kinase 1) gene depends on the alkylating agent used. This report reviews the literature on the MPG proteins, DNA glycosylases removing 3-methyladenine, and the use of these enzymes to detect DNA damage at the nucleotide level.
Wydawca
-
Rocznik
Tom
45
Numer
1
Opis fizyczny
p.191-202,fig.
Twórcy
autor
  • City of Hope National Medical Center, 1450 E. Duarte Rd., Duarte, CA 91010 USA
autor
autor
autor
autor
Bibliografia
  • Barrows, L.R. & Magee, P.N. (1982) Nonenzymatic methylation of DNA by S-adenosylmethionine in vitro. Carcinogenesis 3, 349-351.
  • Beranek, D.T. (1990) Distribution of methyl and ethyl adducts following alkylation with mono- functional alkylating agents. Mutation Res. 231, 11-30.
  • Rental. K.CV, Bjaris, M., Bjelland, S. & Seeberg, E. (1990) Cloning and expression in Escherichia coli of a gene for an alkylbase DNA glycosylase from Saccharomyces cerevisiae; a homologue to the bacterial alkA gene. EMBO J. 9, 4563-4568.
  • Bjelland, S., Bjoras, M. & Seeberg, E. (1993) Exci­sion of 3-methylguanine from alkylated DNA by 3-methyladenine DNA glycosylase I of Escherichia coli. Nucleic Acids Res. 21, 2045-2049.
  • Boiteux, S., Huisman, O. & Laval, J. (1984) 3- Methyladenine residues in DNA induce the SOS function sfiA in Escherichia coli. EMBO J. 3, 2569-2573.
  • Bramson, J., O'Connor, T. & Panasci, L. (1995) Ef­fect of alkyl-iV-purine DNA glycosylase overex- pression on cellular resistance to Afunctional alkylating agents. Biochem. Pharmacol 50, 39-44.
  • Caldecott, K.W., Aoufouchi, S., Johnson, P. & Shall, S. (1996) XRCC1 polypeptide interacts with DNA polymerase beta and possibly poly (ADP-ribose) polymerase, and DNA ligase III is a novel molecular 'nick-sensor' in vitro. Nu­cleic Acids Res. 224, 4387-4394.
  • Castaing, B., Zelwer, C., Laval, J. & Boiteux, S. (1995) HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J. Biol Chem. 270, 10291- 10296.
  • Chakravarti, D., Ibeanu, G.C., Tano, K. & Mitra, S. (1991) Cloning and expression in Escherichia coli of a human cDNA encoding the DNA re­pair protein N-methylpurine-DNA glycosylase. J. Biol Chem. 266, 15710-15715.
  • Chen, J., Derfler, B., Maskati, A. & Samson, L. (1989) Cloning a eukaryotic DNA glycosylase repair gene by the suppression of a DNA re­pair defect in Escherichia coli. Proc. Natl Acad. Sei. U.S.A. 86, 7961-7965.
  • Clarke, N.D., Kvaal, M. & Seeberg, E. (1984) Clon­ing of Escherichia coli genes encoding 3- methyladenine DNA glycosylases I and II. Mol. Gen. Genet 197, 368-372.
  • CoquereUe, T., Dosch, J. & Kaina, B. (1995) Over- expression of AT-methylpurine-DNA glycosy­lase in Chinese hamster ovary cells renders them more sensitive to the production of chro­mosomal aberrations by methylating agents — a case of unbalanced DNA repair. Mutation Res. 336, 9-17.
  • Denissenko, M.F., Pao, A., Tang, M. & Pfeifer, G.P. (1995) Preferential formation of benzo(al pyrene adducts at lung cancer mutational hot- spots in P53. Science 274, 430-432.
  • Doetsch, P.W. & Cunningham, R.P. (1990) The en- zymology of apurinic/apyrimidinic endonucle- asca. Mutation Res. 236, 173-201.
  • Engelward, B.P., Boosalis, M.S., Chen, B.J., Deng, Z., Siciliano, M.J. & Samson, L. (1993) Clon­ing and characterisation of a mouse 3-methyl- adenine/7-methylguanine/3-methylguanine- DNA glycosylase cDNA whose gene maps to chromosome 11. Carcinogenesis 14, 175-181.
  • Engelward, B.?., Dreslin, A., Christensen, J., Huszar, D., Kurahara, C. & Samson, L. (1996) Repair-deficient 3-methyladenine DNA glyco- sylase homozygous mutant mouse cells have increased sensitivity of alkylation-induced chromosome damage and cell killing. EMBO J. 15, 945-952.
  • Gao, S., Drouin, R. & Holmquist, G.P. (1994) DNA repair rates mapped along the human PGKl gene at nucleotide resolution. Science 263. 1438-1440.
  • Grimaldi, K.A., McAdam, S.R. & Hartley, J.A. (1996) Single-ligation PCR for detection of DNA adducts; in Technologies for the Detection of DNA Damage and Mutations (Pfeifer, G.P., ed.) 8, pp. 227-230, Plenum Press, New York.
  • Habraken, Y.. Carter, C.A., Sekiguchi, M. & Lud- lum, D.B. (1991) Release of AT2,3-ethano- guanine from haloethylnitrosourea-treated DNA by Escherichia coli 3-methyladenine DNA glycosylase II. Carcinogenesis 12, 1971-1973.
  • Klungland, A. & Lindahl, T. (1997) Second path­way for completion of human DNA base excision-repair: Reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J. 16. 3341-3348.
  • Krokan, H.E., Standal, R. & Slupphaug, G. (1997) DNA glycosylases in the base excision repair of DNA. Biochem. J. 325. 1-16.
  • Kubota, Y., Nash, R.A., Klungland, A., Schar, P., Barnes, D.B. & Lindhal. T. (1996) Reconstitu­tion of DNA base excision-repair with purified human proteins: Interaction between DNA po­lymerase beta and the XRCCl protein. EMBO J. 15, 6662-6670.
  • Labahn, J., Scharer, O.D., Long. A., Ezaz-Nikpay, K., Verdine. G.L. & Ellenberger, T.E. (1996)
  • Structural basis for the excision repair of alkylation-damaged DNA. Cell 86, 321-329.
  • Larson, K., Sahm, J., Shenkar, R. & Strauss, B. (1985) Methylation-induced blocks to in vitro DNA replication. Mutation Res. 150, 77-84.
  • Lawley, P.D., Harris, G., Phillips, E., Irving, W., Colaco, C.B., Lydyard, P.M. & Roitt, I.M. (1986) Repair of chemical carcinogen-induced damage in DNA of human lymphocytes and lymphoid cell lines — studies of the kinetics of removal of 06-methylguanine and 3-methyl­adenine. Chem. -Biol Interact 57 107-121.
  • Lindahl, T., Sedgwick, B., Sakumi, Y. & Sekiguchi, M. (1988) Regulation and expression of the adaptive response to alkylating agents. Annu. Rev. Biochem. 57, 133-157.
  • Margison, G.P. & Pegg, A.E. (1981) Enzymatic re­lease of 7-methylguanine from methylated DNA by rodent liver extracts. Proc. Natl Acad. U.S.A. 78, 861-865.
  • Marnett, L.J. & Burcham, P.C. (1993) Endogenous DNA adducts: Potential and paradox. Chem. Res. Tbxicol. 6, 771-785.
  • Mattes, W.B., Lee, C.-S., Laval, J. & O'Connor, T.R. (1996) Excision of nitrogen mustard DNA alkylation adducts by bacterial and mammal­ian 3-methyladenine-DNA glycosylases. Can­cer Res. submitted.
  • Morohoshi, F., Hayashi, K. & Munkata, N. (1993) Bacillus subtilis alkA gene encoding inducible 3-methyladenine DNA glycosylase is adjacent to the ada operon. J. Bacteriol 175, 6010- 6017.
  • O'Connor, T.R. (1993) Purification and characteri­sation of human 3-methyladenine-DNA glyco­sylase. Nucleic Acids Res. 21, 5561-5569.
  • O'Connor, T.R., Boitoux, S. & Laval. J. (1988) Ring-opened 7-methylguanine residues are a block to in vitro DNA synthesis. Nucleic Acids Res. 16. 5879-5894.
  • O'Connor, T.R. & Laval, F. (1990) Isolation and structure of a cDNA expressing a mammalian 3-methyladenine-DNA glycosylase. EMBO J. 9, 3337-3342.
  • O'Connor, T.R. & Laval. J. (1991) Human cDNA ex­pressing a functional DNA glycosylase excising 3-methyladenine and 7-methylguanine. Biochem. Biophys. Res. Commun. 176, 1170- 1177.
  • Pfeifer, G.P., Drouin, R. & Holmquist, G.P. (1993) Detection of DNA adducts at the DNA se­quence level by Iigation-mediated PCR. Mu­tation Res. 288, 39-46.
  • Pfeifer, G.P., Drouin, R., Riggs, A.D. & Holmquist, G.P. (1991) In vivo mapping of a DNA adduct at nucleotide resolution: Detection of pyrimidine (6-4) pyrimidone photoproducts by Iigation- mediated polymerase chain reaction. Proc. NatL Acad. Sci. U.S.A. 88, 1374-1378.
  • Pfeifer, G.P., Steigerwald, S.D., Mueller, PR., Wold, B. & Riggs, A.D. (1989) Genomic se­quencing and methylation analysis by ligation mediated PCR. Science 246, 810-813.
  • Pieper, R.O. & Erickson, L.C. (1990) DNA adenine adducts induced by nitrogen mustards and their role in transcription termination in vitro. Carcinogenesis 11 1739-1746.
  • Pierre, J. & Laval, J. (1986) Cloning of Micrococ­cus luteus 3-methyladenine-DNA glycosylase genes in Escherichia coli. Gene 43 139-146.
  • Rodriguez, H., Drouin, R., Holmquist, G.P., O'Con­nor, T.R., Boiteux, S., Laval, J., Doroshow, J.H. & Akman, S.A. (1995) Mapping of cop­per/hydrogen peroxide-induced DNA damage at nucleotide resolution in human genomic DNA by Iigation-mediated Polymerase Chain Reaction. J. HioL Chem. 270, 17633-17640.
  • Roy, R., Brooks, C. & Mitra, S. (1994) Purification and biochemical characterization of recombi­nant iV'-methylpurine-DNA glycosylase of the mouse. Biochemistry 33, 15131-15140.
  • Rydberg, B. & Lindahl, T. (1982) Nonenzymatic methylation of DNA by the intracellular methyl group donor S-adenosyl-L-methionme is a potentially mutagenic reaction. EMBO J. 1, 211-216.
  • Samson, L., Derfler, B., Boosalis, M. & Call, K. (1991) Cloning and characterization of a 3- methyladenine DNA glycosylase cDNA from human cells whose gene maps to chromosome 16. Proc. NaiL Acad. ScL U.S.A. 88, 9127- 9131.
  • Santerre, A. & Britt, A.B. (1994) Cloning of a 3- methyladenine-DNA glycosylase from Arabi- dopsis thaliana. Proc. Natl. Acad. ScL U.S.A. 91, 2240-2244.
  • Saparbaev, M., Kleibl, K. & Laval, J. (1995) Escherichia coli, Saccharomyces cerevisiae, rat and human 3-methyladenine DNA glycosy­lases repair l^-ethenoadenine when present in DNA. Nucleic Acids Res. 23, 3750-3755.
  • Saparbaev, M. & Laval, J. (1994) Excision of hy- poxanthine from DNA containing dIMP resi­dues by the Escherichia coli, yeast, rat, and hu­man alkylpurine DNA glycosylases. Proc. Natl Acad. Sci. U.S.A. 91, 5873-5877.
  • Scicchitano, D.A. & Hanawalt, P.C. (1989) Repair of N-methylpurines in specific DNA sequences in Chinese hamster ovary cells: Absence of strand specificity in the dihydrofolate reduc­tase gene. Proc. NatL Acad Sci. U.S.A. 86, 3050-3054.
  • Singer, B. & Brent, T.P. (1981) Human lympho­mas ts contain DNA glycosylase activity excis­ing N-3 and N-7 methyl and ethyl purines but not O alkylguanines or 1-alkyladenines. Proc. NatL Acad. ScL U.S.A. 78, 856-860.
  • Singer, B. & Grunberger, D. (1983) Molecular biol­ogy of mutagens and carcinogens. Plenum, New York.
  • Singer, B. & Hang, B. (1997) What structural fea­tures determine repair enzyme specificity and mechanism in chemically modified DNA? Chem. Res. 7bxicol 10, 713-732.
  • Tornaletti, S. & Pfeifer, G.P. (1994) Slow repair of pyrimidine dimers at p53 mutation hotspots in skin cancer. Science 263 1436-1438.
  • Wang, P., Bauer, G.B., Bennett, R.A.O. & Povirk, L.F. (1991) Thermolabile adenine adducts and AT base pair substitutions induced by nitro­gen mustard analogues in an SV40-based shut­tle plasmid. Biochemistry SO, 11515-11521.
  • Wang, W., Sitaram, A. & Scicchitano, D.A. (1995) 3-Methyladenine and 7-methylguanine exhibit no preferential removal from the transcribed strand of the dihydrofolate reductase gene in Chinese hamster ovary Bll cells. Biochemistry 34, 1798-1804.
  • Wei, D., Maher, V.M. & McCormick, J.J. (1995) Site-specific rates of excision repair of benzolalpyrene diol epoxide adducts in the hy- poxanthine phosphoribosyltransferase gene of human fibroblasts: Correlation with mutation spectra. Proc. Natl Acad. Sci. U.S.A. 92, 2204-2208.
  • Wei, D., Maher, V.M. & McCormick, J.J. (1996) Site-specific excision repair of 1-nitrosopy- rene-induced DNA adducts at the nucleotide level in the HPRT gene of human fibroblasts:
  • Effect of adduct conformation on the pattern of site-specific repair. Mol. Cell Biol 16, 3714- 3710.
  • Yamagata, Y., Kato, M., Odawara, K., Tokuno, Y., Nakashima, Y., Matsushima, N.Y.K.. Tomita, K., Ihara, K., Fujü, Y., Nakabeppu, Y., Se- kiguchi, M. & Fujii, S. (1996) Three-dimen­sional structure of a DNA repair enzyme, 3- methyladenine DNA glycosylase II, from Escherichia coli. Cell 86, 311-319.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-7f9538d0-a288-4703-a53e-493d376cda9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.