Warianty tytułu
Języki publikacji
Abstrakty
Pseudomonas aurantiaca S-1 can serve as a natural source of pesticides towards phytopathogens like Fusarium oxysporum P1 and Pseudomonas syringae pv. glycinea BIM B-280. The largest pool of produced antimicrobial compounds was found in four days-old spent culture supernatant. At least two groups of bioactive substances were identified, one responsible for the antibacterial activity and the other for the antifungal activity. The fraction with strong antibacterial activity had the molecular mass 282.8 and formula C₁₈H₃₆NO, and the fraction with strong antifungal activity had molecular mass 319.3 and molecular formula C₂₀H₃₁O₃ which could be a new fungicide. Additionally, P. aurantiaca S-1 was able to produce indoleacetic acid and siderophores.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.245-250,fig.,ref.
Twórcy
Bibliografia
- Arshad M. and W.T. Frankenberger. 1991. Microbial production of plant hormones. Plant Soil 133: 1-8.
- Boland G.J. and L.D. Kuykendall (eds). 1998. Plant-Microbe Interactions and Biological Control. Marcel Dekker, Inc. NY.
- Cazorla F.M., Duckett S.B., Bergstroem E.T., Noreen S., Odijk R., Lugtenberg B.J., Thomas-Oates J.E. and G.V. Bloemberg. 2006. Biocontrol of avocado dematophora root rot by antagonistic Pseudomonas fluorescens PCL1606 correlates with the production of 2-hexyl 5-propyl resorcinol. Mol. Plant Microbe Interact. 19: 418-428.
- Chin-A-Woeng T.F., Bloemberg G.V. and B.J. Lugtenberg. 2003. Phenazines and their role in biocontrol by Pseudomonas bacteria. New Phytol. 157: 503-523.
- Feklistova I.N. and N.P. Maksimova. 2005. Optimization of conditions for phenazine production by Pseudomonas aurantiaca B-162 (in Russian). Bulletin of BSU, Chemistry, Biology, Geography 2: 29-31.
- Gordon S.A. and R.P. Weber. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26: 192-195.
- Guihen E., Glennon J.D., Cullinane M. and F. O'Gara. 2004. Rapid analysis of antimicrobial metabolites monoacetylphloro-glucinol and 2,4-diacetylphloro-glucinol using capillary zone electrophoresis. Electrophoresis 25: 1536-1542.
- Hamburger M.O. and G.A. Cordell. 1987. A direct bioauto-graphic tlc assay for compounds possessing antibacterial activity. J. Nat. Prod. 50: 19-22.
- Hodgson E. and P.E. Levi. 1996. Pesticides: an important but underused model for the environmental health sciences. Environ. Health Perspect. 104: 97-106.
- Kang, B.R., Yang K.Y., Cho B.H., Han T.H., Kim I.S., Lee M.C., Anderson A.J. and Y.C. Kim. 2006. Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Curr. Microbiol. 52: 473-476.
- Kumar R.S., Ayyadurai N., Pandiaraja P., Reddy A.V., Venkateswarlu Y., Prakash O. and N. Sakthivel. 2005. Characterization of antifungal metabolite produced by a new strain Pseudomonas aeruginosa PUPa3 that exhibits broad-spectrum antifungal activity and biofertilizing traits. J. Appl. Microbiol. 98: 145-154.
- Leisinger T. and R. Margrafft. 1979. Secondary metabolites of the fluorescent pseudomonads. Microbiol. Mol. Biol. Rev. 4: 422-442.
- Leong J. 1986. Siderophores: their biochemistry and possible role in the biocontrol of plant pathogens. Annu. Rev. Phytopathol. 24: 187-209.
- Ligon J.M., Hill D.S., Hammer P.E., Torkewitz N.R., Hofmann D., Kempf H-J. and K-H. Van Pee. 2000. Natural products with antifungal activity from Pseudomonas biocontrol bacteria. Pest Manag. Sci. 56: 688-695.
- Michael J.P. 2005. Quinoline, quinazoline and acridone alkaloids. Nat. Prod. Rep. 22: 627-646.
- Mikuriya T., Fukushima M., Yanagi H., Nagamatsu Y. and A. Yoshimoto. 2001. Production of plant hormone and antifungal antibiotics by Pseudomonas fluorescens S543 grown on ethanol. Hiroshima Daigaku Seibutsu Seisangakubu Kiyo. 40: 33-43.
- Mossialos D., Meyer J-M., Budzikiewicz H., Wolff U., Koedam N., Baysse C., Anjaiah P. and P. Cornelis. 2000. Quinolobactin, a new siderophore of Pseudomonas fluorescens ATCC 17400, the production of which is repressed by the cognate pyoverdine. Appl. Environ. Microbiol. 66: 487-492.
- Neilands J.B. 1995. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 270: 26723-26726.
- Nielsen M.N., Sorensen J., Fels J. and H.C. Pedersen 1998. Secondary metabolite and endochitinase-dependent antagonism toward plant-pathogenic microfungi of Pseudomonas fluorescens isolates from sugar beet rhizosphere. Appl. Environ. Microbiol. 64: 3563-3569.
- Nielsen T.H., Thrane C, Christophersen C, Anthoni U. and J. Sorensen. 2000. Structure, production characteristics and fungal antagonism of tensin - a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J. App. Microbiol. 89: 992-1001.
- Nowak-Thompson B., Chaney N., Wing J.S., Gould S.J. and J.E. Loper. 1999. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacterial. 181: 2166-2174.
- Omel'yanets T.G. and G.P. Mel'nik. 1987. Toxicological evaluation of the microbial preparation mycolytin. Zdravookhranenie Turkmenistana 6: 8.
- Patten C.L and B.R. Glick. 2002. Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801.
- Paul D. and Y.R. Sarma. 2006. Plant growth promoting rhizho-bacteria (PGPR)-mediated root proliferation in black pepper (Piper nigrum L.) as evidenced through GS root software. Archiv. Phytopathol. Plant Prot. 39: 311-314.
- Pidoplichko V.N and A.D Garagulya. 1974. Effect of antagonistic bacteria on development of wheat root rot. Mikrobiol Zh. 36: 599-602.
- Pohanka A., Broberg A., Johansson M., Kenne L. and J. Levenfors. 2005. Pseudotrienic acids A and B, two bioactive metabolites from Pseudomonas sp. MF381-IODS. J. Nat. Prod. 68: 1380-1385.
- Price-Whelan A., Dietrich L.E. and D.K. Newman. 2006. Rethinking 'secondary' metabolism: physiological roles for phenazine antibiotics. Nat. Chem. Biol. 2: 71-78.
- Raaijmakers J.M. Bonsall R.F. and D.M. Weller. 1999. Effect of population density of Pseudomonas fluorescens on production of 2,4-diacetylphloroglucinol in the rhizosphere of wheat. Phytopathology 89: 470-475.
- Raaijmakers J.M., Weller D.M. and L.S Thomashow. 1997. Frequency of antibiotic-producing Pseudomonas spp. in natural environments. Appl. Environ. Microbiol. 63: 881-887.
- Rensen J.S., EliseJensen L. and O. Nybroe. 2001. Soil and rhizosphere as habitats fox Pseudomonas inoculants: new knowledge on distribution, activity and physiological state derived from micro-scale and single-cell studies. Plant Soil 232: 97-108.
- Segi Y. (ed). 1983. The Methods of Soil Microbiology (in Russian) "Kolos", Moscow.
- Smirnov V.V. and E.A. Kiprianova. 1990. Bacteria of the Genera Pseudomonas (in Russian). Nauk. Dumka, Kiev.
- Schlueter K. and H.C. Weltzien. 1971. Mode of action of systemic fungicides on erysiphe graminis. Mededelingen van de Faculteit Landbouwwetenschappen, Universiteit Gent. 36: 1159-1164.
- Thomashow L.S., Weller D.M., Bonsall R.F. and L.S. Pierson. 1990. Production of the antibiotic phenazine-1 -carboxylic acid by fluorescent Pseudomonas species in the rhizosphere of wheat. Appl. Environ. Microbiol. 56: 908-912.
- Venturi V., Zennaro F., Degrassi G., Okeke B.C. and C.V. Bruschi. 1998. Genetics of ferulic acid bioconversion to proto-catechuic acid in plant-growth-promoting Pseudomonas putida WCS358. Microbiology 144: 965-973.
- Zwir-Ferenc A. and M. Biziuk. 2004. An analysis of pesticides and polychlorinated biphenyls in biological samples and foods. Anal. Chem. 34: 95-103.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-7dbc3b5e-5732-416b-929a-8bdf36919875