Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2001 | 48 | 2 |
Tytuł artykułu

Reduction of bacterial genome size and expansion resulting from obligate intracellular life style and adaptation to soil habitat

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Prokaryotic or gan isms are ex posed in the course of evo lu tion to var i ous im pacts, re­sult ing of ten in dras tic changes of their ge nome size. De pending on cir cum stances, the same lin eage may di verge into spe cies hav ing sub stan tially re duced genomes, or such whose genomes have un der gone con sid er able en large ment. Ge nome re duc tion is a con se quence of ob li gate intracellular life style ren der ing nu mer ous genes ex pend able. An other con se quence of intracellular life style is re duc tion of ef fec tive pop u la- tion size and lim ited pos si bil ity of gene ac quire mentvia lat eral trans fer. This causes a state of re laxed se lec tion re sult ing in ac cu mu la tion of mildly del e te ri ous mu ta tions that can not be cor rected by re com bi na tion with the wild type copy. Thus, gene loss is usually irreversible. Additionally, constant environment of the eukaryotic cell ren­ders that some bac te rial genes in volved in DNA re pair are ex pand able. The loss of these genes is a prob a ble cause of mutational bias re sult ing in a high A+T con tent. While causes of genome reduction are rather indisputable, those resulting in ge­nome ex pan sion seem to be less ob vi ous. Pre sum ably, the ge nome en large ment is an indirect consequence of adaptation to changing environmental conditions and re­quires the ac qui si tion and in te gra tion of nu mer ous genes. It seems that the need for a great number of capabilities is common among soil bacteria irrespective of their phylo gen etic re la tion ship. How ever, this would not be pos si ble if soil bac te ria lacked in dig e nous abil i ties to ex change and ac cu mu late ge netic in for ma tion. The lat ter are con sid er ably fa cil i tated when house keep ing genes are phys i cally sep a rated from adaptive loci which are useful only in certain circum stances.
Wydawca
-
Rocznik
Tom
48
Numer
2
Opis fizyczny
p.367-381
Twórcy
  • Polish Academy of Sciences, 61-704 Poznan, Noskowskiego 12-14, Poland
autor
Bibliografia
  • 1.Alm, R.A., Ling, L.S., Moir, D.T., King, B.L., Brown, E.D., Doig, P.C., Smith, D.R., Noonan, B., Guild, B.C., de Jonge, B.L, Carmel, G., Tummino, P.J., Caruso, A., Uria-Nickelsen, M., Mills, D.M., Ives, C., Gibson, R., Merberg, D., Mills, S.D., Jiang, Q., Taylor, D.E., Vovis, G.F. & Trust, T.J. (1999) Genomic-sequence comparison of two unrelated isolates of the humangastric pathogen Helicobacter pylori. Nature 397, 176-180.
  • 2.Andersson, J.O. & Andersson, S.G. (1999) Genome degradation is an ongoing process in Rickettsia. Mol. Biol. Evol. 16, 1178-1191.
  • 3.Andersson, J.O. (2000) Evolutionary genomics: is Buchnera a bacterium or an organelle? Curr. Biol. 10, 866-868.
  • 4.Andersson, S.G. & Kurland, C.G. (1998) Reductive evolution of resident genomes. Trends Microbiol. 6, 263-268.
  • 5.Andersson, S.G., Zomorodipour, A., Andersson, J.O., Sicheritz-Ponten, T., Alsmark, U.C., Podowski, R.M., Naslund, A.K., Eriksson, A.S., Winkler, H.H. & Kurland, C.G. (1998) The genome sequence ofRickettsia prowazekii and the origin of mitochondria. Nature 396, 133-140.
  • 6.Baldani, J.I., Weaver, R.W., Hynes, M.F. & Eardly, B.D. (1992) Utilization of carbon substrates, electrophoretic enzyme patterns, and symbiotic performance of plasmid-cured clover rhizobia. Appl. Envir. Microbiol. 58, 2308- 2314.
  • 7.Bandi, C., Anderson, T.J., Genchi, C. & Blaxter, M.L. (1998) Phylogeny of Wolbachia in filarial nematodes. Proc. R. Soc. Lond. B Biol. Sci. 265, 2407-2413.
  • 8.Baumann, P., Baumann, L., Lai, C.Y., Rouhbakhsh, D., Moran, N.A. & Clark, M.A. (1995) Genetics, physiology, and evolutionary relationships of the genus Buchnera: Intracellular symbionts of aphids. Annu. Rev. Microbiol. 49, 55-94.
  • 9.Berck, S., Perret, X., Quesada-Vincens, D., Prome, J.-C., Broughton, W.J. & Jabbouri, S. (1999) NolL of Rhizobium sp. strain NGR234 is required for O-acetyltransferase activity. J. Bacteriol. 181, 957-964.
  • 10.Broughton, W.J. & Perret, X. (1999) Genealogy of legume-rhizobium symbioses. Curr. Opin. Plant Biol. 2, 305-311.
  • 11.Brynnel, E.U., Kurland, C.G., Moran, N.A. & Andersson, S.G. (1998) Evolutionary rates for tuf genes in endosymbionts of aphids. Mol. Biol. Evol. 15, 574-582.
  • 12.Carlson, R.W., Sanjuan, J., Bhat, U.R., Glushka, J., Spaink, H.P., Wijfjes, A.H., van Brussel, A.A., Stokkermans, T.J., Peters, N.P. & Stacey, G. (1993) The structures and biological activities of the lipo-oligosaccharidenodulation signals produced by type I and II strains of Bradyrhizobium japonicum. J. Biol. Chem. 268, 18372-18381.
  • 13.Casjens, S. (1998) The diverse and dynamic structure of bacterial genomes. Annu. Rev. Genet. 32, 339-377.
  • 14.Chaintreuil, C., Giraud, E., Prin, Y., Lorquin, J., Ba, A., Gillis, M., de Lajudie, P. & Dreyfus, B. (2000) Photosynthetic bradyrhizobia are natural endophytes of the african wild rice Oryza breviligulata. Appl. Environm. Microbiol. 66, 5437-5447.
  • 15.Downie, A.J. (1998) Functions of rhizobial nodulation genes; in The Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria (Spaink, H.P., Kondorosi, A., Hooykaas, P.J.J., eds.) pp. 387-402, Kluwer Academic Publishers.
  • 16.Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R., White, O., Ketchum, K.A., Dodson, R., Hickey, E.K., Gwinn, M., Dougherty, B., Tomb, J.F., Fleischmann, R.D., Richardson, D., Peterson, J., Kerlavage, A.R., Quackenbush, J., Salzberg, S., Hanson, M., van Vugt, R., Palmer, N., Adams, M.D., Gocayne, J., Venter, J.C., et al. (1997) Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390, 580-586.
  • 17.Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D., Bult, C.J., Kerlavage, A.R., Sutton, G., Kelley, J.M., et al. (1995). The minimal gene complement of Mycoplasma genitalium. Science 270, 397-403.
  • 18.Freiberg, C., Fellay, R., Bairoch, A., Broughton, W.J., Rosenthal, A. & Perret, X. (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387, 394-401.
  • 19.Goettfert, M., Roethlisberger, S., Kuendig, C., Beck, C., Marty, R. & Hennecke, H. (2001) Potential symbiosis-specific genes uncovered by sequencing a 410-kb DNA region of the Bradyrhizobium japonicum chromosome. J. Bacteriol. 183, 1405-1412.
  • 20.Hacker, J. & Kaper, J.B. (2000) Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641-679.
  • 21.Handy, J. & Doolittle, R.F. (1999) An attempt to pinpoint the phylogenetic introduction of glutaminyl-tRNA synthetase among bacteria. J. Mol. Evol. 49, 709-715.
  • 22.Hanin, M., Jabbouri, S., Quesada-Vincens, D., Freiberg, C., Perret, X., Prome, J.-C., Broughton, W.J. & Fellay, R. (1997) Sulphation of Rhizobium sp. NGR234 Nod factors is dependent on noeE, a new host-specificity gene. Mol. Microbiol. 24, 1119-1129.
  • 23.Hurst, G.D.D., Walker, L.E. & Majerus, M.E.N. (1996) Bacterial infections of hemocytes associated with the maternally inherited male-killing trait in british populations of the two spot ladybird, Adalia bipunctata. J. Invertebr. Pathol. 68, 286-292.
  • 24.Hynes, M.F. & McGregor, N.F. (1990) Two plasmids other than the nodulation plasmid are necessary for formation of nitrogen-fixing nodules by Rhizobium leguminosarum. Mol. Microbiol. 4, 567-574.
  • 25.Innes, R.W., Hirose, M.A. & Kuempel, P.L. (1988) Induction of nitrogen-fixing nodules on clover requires only 32 kilobase pairs of DNA from the Rhizobium trifolii symbiosis plasmid. J. Bacteriol. 170, 3793-3802.
  • 26.Jabbouri, S.B., Relic, B., Hanin, M., Kamalaprija, P., Burger, U., Prome, D., Prome, J.-C. & Broughton, W.J. (1998) nolO and noel(HsnIII) of Rhizobium sp. NGR234 are involved in 3-O-carbamoylation and 2-O-methylation of Nod factors. J. Biol. Chem. 273, 12047-12055.
  • 27.Kado, C.I. (2000) The role of the T-pilus in horizontal gene transfer and tumorigenesis. Curr. Opin. Microbiol. 3, 643-648.
  • 28.Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Mochizuki, Y., Nakayama, S., Nakazaki, N., Shimpo, S., Sugimoto, M., Takeuchi, C., Yamada, M. & Tabata, S. (2000) Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 31, 331-338.
  • 29.Komaki, K. & Ishikawa, H. (1999) Intracellular bacterial symbionts of aphids possess many genomic copies per bacterium. J. Mol. Evol. 48, 717-722.
  • 30.Kundig, C., Hennecke, H. & Gottfert, M. (1993) Correlated physical and genetic map of the Bradyrhizobium japonicum 110 genome. J. Bacteriol. 175, 613-622.
  • 31.Legocki, A.B., Karlowski, W.M., Podkowinski, J., Sikorski, M.M. & Stepkowski, T. (1997) Advances in molecular characterization of the yellow lupin-Bradyrhizobium sp. (Lupinus) symbiotic model; in NATO ASISeries, vol. G39: Biological Nitrogen Fixation for Ecology and Sustainable Agriculture (Legocki, A.B., Bothe, H. & Puhler, A., eds.) pp. 263-266, Springer-Verlag, Berlin, Heidelberg.
  • 32.Lerouge, P., Roche, P., Faucher, C., Maillet, F., Truchet, G., Prome, J.-C. & Denarie, J. (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344, 781-784.
  • 33.Lin, W.S., Cunneen, T. & Lee, C.Y. (1994) Sequence analysis and molecular characterization of genes required for the biosynthesis of type 1 capsular polysaccharide in Staphylococcus aureus. J. Bacteriol. 176, 7005-7016.
  • 34.Lopez-Lara, I.M., van den Berg, J.D., Thomas- Oates, J.E., Glushka, J., Lugtenberg, B.J. & Spaink, H.P. (1995) Structural identification of the lipo-chitin oligosaccharide nodulation. signals of Rhizobium loti. Mol. Microbiol. 15, 627-638.
  • 35.Mergaert, P., Van Montagu, M. & Holsters, M. (1997) Molecular mechanisms of Nod factor diversity. Mol. Microbiol. 25, 811-817.
  • 36.Moran, N.A. (1996) Accelerated evolution and Muller's rachet in endosymbiotic bacteria. Proc. Natl. Acad. Sci. U.S.A. 93, 2873-2878.
  • 37.Moran, N.A. & Wernegreen, J.J. (2000) Lifestyle evolution in symbiotic bacteria: Insights from genomics. Trends Ecol. Evol. 15, 321-326.
  • 38.Moxon, E.R., Rainey, P.B., Nowak, M.A. & Lenski, R.E. (1994) Adaptive evolution of highly mutable loci in pathogenic bacteria. Curr. Biol. 4, 24-33.
  • 39.Newman, E.B., Budman, L.I., Chan, E.C., Greene, R.C., Lin, R.T., Woldringh, C.L. & D'Ari, R. (1998) Lack of S-adenosylmethionine results in a cell division defect in Escherichia coli. J. Bacteriol. 180, 3614-3619.
  • 40.Ochman, H., Elwyn, S. & Moran, N.A. (1999) Calibrating bacterial evolution. Proc. Natl. Acad. Sci. U.S.A.. 96, 12638-12643.
  • 41.Ochman, H., Lawrence, J.G. & Groisman, E.A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299-304.
  • 42.Oresnik, I.J., Liu, S.L., Yost, C.K. & Hynes, M.F. (2000) Megaplasmid pRme2011a of Sinorhizobium meliloti is not required for viability. J. Bacteriol. 182, 3582-3586.
  • 43.Perret, X., Freiberg, C., Rosenthal, A., Broughton, W.J. & Fellay, R. (1999) High-resolution transcriptional analysis of the symbiotic plasmid of Rhizobium sp. NGR234. Mol. Microbiol. 32, 415-425.
  • 44.Perret, X., Staehelin, C. & Broughton, W.J. (2000) Molecular basis of symbiotic promiscuity. Microbiol. Mol. Biol. Rev. 64, 180-201.
  • 45.Preisig, O., Anthamatten, D. & Hennecke, H. (1993) Genes for a microaerobically induced oxidase complex in Bradyrhizobium japonicum are essential for a nitrogen-fixing endosymbiosis. Proc. Natl. Acad. Sci. U.S.A. 90, 3309- 3313.
  • 46.Preston, G., Haubold, B. & Rainey, P.B. (1998) Bacterial genomics and adaptation to life on plants: Implications for the evolution of pathogenicity and symbiosis. Curr. Opin. Microb. 1, 589-597.
  • 47.Price, N.P.J., Relic, B., Talmont, F., Lewin, A., Prome, D., Pueppke, S.G., Maillet, F., Denarie, J., Prome, J.-C. & Broughton, W.J. (1992) Broad-host range Rhizobium species strain NGR234 secretes a family of carbamoylated and fucosylated, nodulation signals that are O-acetylated and sulphated. Mol. Microbiol. 6, 3575-3584.
  • 48.Pueppke, S.G. & Broughton, W.J. (1999) Rhizobium sp. strain NGR234 and R. frediiUSDA257 share exceptionally broad, nested host ranges. Mol. Plant Microbe Interact. 12, 293-318.
  • 49.Quesada-Vincens, D., Hanin, M., Broughton, W.J. & Jabbouri, S. (1998) In vitro sulfotransferase activity of NoeE, a nodulation protein of Rhizobium sp. NGR234. Mol. Plant Microbe Interact. 11, 592-600.
  • 50.Raoult, D. & Roux, V. (1997) Rickettsioses as paradigms of new or emerging infectious diseases. Clin. Microbiol. Rev. 10, 694-719.
  • 51.Romero, D., Brom, S., Martinez-Salazar, J., Girard, M.L., Palacios, R. & Davila, G. (1991) Amplification and deletion of a nod-nif region in the symbiotic plasmid of Rhizobium phaseoli. J. Bacteriol. 173, 2435-2441.
  • 52.Rouhbakhsh, D., Lai, C.Y., von Dohlen, C.D., Clark, M.A., Baumann, L., Baumann, P., Moran, N.A. & Voegtlin, D.J. (1996) The tryptophan biosynthetic pathway of aphid endosymbionts (Buchnera): Genetics and evolution of plasmid-associated anthranilate synthase (trpEG) within the aphididae. J. Mol. Evol. 42, 414-421.
  • 53.Schlaman, H.R.M., Philips, D.A. & Kondorosi, E. (1998) Genetic organization and transcriptional regulation of rhizobial nodulation genes; in The Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria (Spaink, H.P., Kondorosi, A. & Hooykaas, P.J.J., eds.) pp. 361-386, Kluwer Academic Publishers.
  • 54.Segovia, L., Pinero, D., Palacios, R. & Martinez-Romero, E. (1991) Genetic structure of a soil population of nonsymbiotic Rhizobium leguminosarum. Appl. Environ. Microbiol. 57, 426-433.
  • 55.Shigenobu, S., Watanabe, H., Hattori, M., Sakaki, Y. & Ishikawa, H. (2000) Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407, 81-86.
  • 56.Sikorski, M.M., Stepkowski, T, Swiderska, A., Biesiadka, J., Lotocka, B., Kopcinska, J., Golinowski, W. & Legocki, A.B. (1999) Differential expression of symbiosis-related genes in yellow lupine; in Highlights of Nitrogen Fixation Research (Martinez, E. & Hernandez, G., eds.) pp. 125-129, Kluwer Academic/Plenum Publishers, New York.
  • 57.Silva, F.J., van Ham, R.C., Sabater, B. & Latorre, A. (1998) Structure and evolution of the leucine plasmids carried by the endosymbiont (Buchnera aphidicola) from aphids of the family Aphididae. FEMSMicrobiol. Lett. 168, 43-49.
  • 58.Smith, J.M., Smith, N.H., O'Rourke, M. & Spratt, B.G. (1993) How clonal are bacteria? Proc. Natl. Acad. Sci. U.S.A. 90, 4384-4388.
  • 59.Stacey, G., Luka, S., Sanjuan, J., Banfalvi, Z., Nieuwkoop, A.J., Chun, J., Forsberg, L.S. & Carlson, R.W. (1994) nodZ, a unique host-specific nodulation gene, is involved in the fucosylation of the lipooligosaccharide nodulation signal of Bradyrhizobium japonicum. J. Bacteriol. 176, 620-633.
  • 60.Stephens, R.S., Kalman, S., Lammel, C., Fan, J., Marathe, R., Aravind, L., Mitchell, W., Olinger, L., Tatusov, R.L., Zhao, Q., Koonin, E.V. & Davis, R.W. (1998) Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282, 754-759.
  • 61.Stepkowski., T., Swiderska, A., Miedzinska, K., Czaplinska, M., Swiderski, M., Biesiadka, J. & Legocki, A.B. (2001) Molecular and phylogenetic analysis of nodulation genes in Bradyrhizobium sp. WM9 (Lupinus) suggests early divergence of lupine lineage within the Bradyrhizobium genus. Submitted.
  • 62.Sullivan, J.T. & Ronson, C.W. (1998) Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proc. Natl. Acad. Sci. U.S.A. 95, 5145-5149.
  • 63.Sy, A., Giraud, E., Jourand, P., Garcia, N., Willems, A., de Lajudie, P., Prin, Y., Neyra, M., Gillis, M., Boivin-Masson, C. & Dreyfus, B. (2001) Methylotrophic Methylobacterium nodulate and fix nitrogen in symbiosis with legumes. J. Bacteriol. 183, 214-220.
  • 64.Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D., Ketchum, K.A., Klenk, H.P., Gill, S., Dougherty, B.A., Nelson, K., Quackenbush, J., Zhou, L., Kirkness, E.F., Peterson, S., Loftus, B., Richardson, D., Dodson, R., Khalak, H.G., Glodek, A., McKenney, K., Fitzegerald, L.M., Lee, N., Adams, M.D., Venter, J.C., et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 388, 539-547.
  • 65.Turner, S.L. & Young, J.P.W. (2000) The glutamine synthetases of rhizobia: Phylogenetics and evolutionary implications. Mol. Biol. Evol. 17, 309-319.
  • 66.van Berkum, P. & Eardly, B.D. (1998) Molecular evolutionary systematics of the Rhizobiaceae; in The Rhizobiaceae. Molecular Biology of Model Plant-Associated Bacteria (Spaink, H.P., Kondorosi, A. & Hooykaas, P.J.J., eds.) pp. 1-24, Kluwer Academic Publishers.
  • 67.Viprey, V., Del Greco, A., Golinowski, W., Broughton, W.J. & Perret, X. (1998) Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28, 1381-1389.
  • 68.Wernegreen, J.J. & Moran, N.A. (1999) Evidence for genetic drift in endosymbionts (Buchnera): Analyses of protein-coding genes. Mol. Biol. Evol. 16, 83-97.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-7c95cc63-3bf2-4482-9dd0-5b53609f280f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.