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The aim of this study was to follow up the electromyographic activity (EMG) of
dynamically working musclés with simultaneous determinations of blood lactate and
plasma catecholamine concentrations during progressive exercise. Twenty eight male
soccer players aged 20.6 +0.8 yrs performed incremental bicycle ergometer exercise
test. The test consisted of 3-min stages exercise separated by 1-min rest intervals.
Work load at each stage increased by 50 W until volitional exhaustion. The root
mean square (rms)-EMG activity of the rectus femoris and soleus muscles were
recorded continuously during exercise. Venous blood samples were taken after each
exercise stage for determination of blood lactate (LA). Additionally in seven subjects
activity increased negligibly during exercise of low to moderate intensities revealing
an abrupt rise at the load corresponding to thresholds of blood lactate and plasma
catecholamine accumulation (LA-T, A-T, NA-T). Close correlations (P < 0.001) were
found between blood LA concentrations and EMG derived from rectus f. (r = 0.72)
and soleus (r = 0.68) muscles. The mean threshold exercise intensities for m. rectus f.
and m. soleus EMG (176+9 W and 172+9 W, respectively) did not differ
significantly from lactate (164+7 W), noradrenaline (178 +6 W) and adrenaline
(180+5 W) thresholds, all of them detected by log-log transformation. The results
indicate that threshold character of EMG changes in dynamically working muscles
reflects to some extend the patterns of blood lactate and plasma catecholamine
changes during incremental exercise.

Key words: EMG, blood lactate, plasma catecholamines, progressive exercise, anaeribic
threshold.

INTRODUCTION

It has been well documented that both blood lactate and plasma
Catecholamine concentrations show an exponential increase during an
-Incremental exercise, with a threshold rise at similar submaximal exercise
Intensities between 50 and 75% of maximal oxygen consumption (VO,_.)
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(1—35). Moreover, close correlations have been reported between lactate (LA)
and plasma adrenaline (A) or noradrenaline (NA) concentratlons during
progressive exercise (1, 5, 6, 7).

It suggests a contribution of the sympatho-adrenal system to the
mechanisms of anaerobic threshold (AT) but the causal relationship between
AT and accompanying changes in plasma catecholamines still remains a matter
of discussion (5, 8, 9).

One possible physiological explanation of the AT focuses on the pattern of
the muscle fiber recruitment during graded exercise (10). Since 1980, when
Moritani and De Vries (11) have reported that the onset of nonlinear increase
in electromyographic activity (EMG) during progressive exercise occurs at the
AT, it has been postulated that the rapid recruitment of fast-twitch (FT) fibers
may potentiate lactate production and its accumulation in muscles and blood
(12, 13). However, the question remains, whether the rapid rise in FT fiber
recruitment is primary or subsequent to the threshold accumulation of lactate,
or catecholamines, during progressive exercise.

The present study was designed to investigate relationships between the
changes in the electrical activity of dynamically working muscle groups with
different morphological characteristics (soleus vs rectus femoris muscle), blood
lactate and plasma catecholamine concentrations during graded exercise and

to find out what is the sequence of those three: EMG, catecholamine and
lactate thresholds.

MATERIAL AND METHODS
Subjects

Twenty eight male soccer players volunteered for this study. The subjects’ age ranged from 18
to 28 yrs. All of them had been involved in regular training program for several years (8.4 + 0.7 yrs).
Basic anthropometric characteristics and some maximal exercise data are presented in Table 1.

Details of the risks, benefits and experimental procedure of the study were provided for cach
subject before obtaining his written informed consent.

Table 1. Descriptive characteristics of subjects (n = 28).
VO,,..x — maximal oxygen consumption, HRmax — maximal

heart rate
Age (yrs) 20.6+0.8
Body mass (kg) 73.2+1.3
Height (cm) 179.0+0.93
VO, (1° min~1) 4.04+0.12
HRmax (beats' min 1) 187.8+1.8
Maximal Power Output (W) 308.9+4.5

Values are expressed as means+ SE.
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Experimental protocol

Exercise tests were conducted in a sitting position on an electronically braked bicycle
ergometer (EM 840, Siemens, Germany). The 3-min exercise loads were increased by S0W until
volitional exhaustion starting from 50 W. The work loads were separated by 60 s recovery intervals
for blood sampling.

Respiratory gas exchange was analyzed continuously and computed every 30 s during the
incremental test with an Cardiopulmonary Exercise System CPX (Med Graphics TM, USA). The
VO, ,levelling off criterion was used to establish the maximum oxygen uptake. Heart rate (HR)
was measured using Sport Tester (PE 3000, Oulu, Finland).

Venous blood samples for lactate (LA) determinations were taken from an antecubital vein via
the previously inserted catheter after each 3-min exercise stage and immediately after cessation of
the maximum exercise. Blood LA concentration was determined according to the enzymatic
method of Gutmann and Wabhlefeld (14) using commercial kits (Bochringer, Mannheim, Germany).
Additional blood samples were drawn from 7 subjects, at the same time points, for catecholamine
determinations. Plasma noradrenaline (NA) and adrenaline (A) concentrations were measured by
the radio-enzymatic method of Da Prada and Zurcher (15) with kits purchased from Chemapol Co.
Ltd. (Czech Republic). The analytical error of this method is 10.8% for adrenaline, and 8.7% for
noradrenaline concentrations.

Blood lactate threshold (LA-T) was detected for each individual using a log-log
transformation method, ie. the bi-segmental logarithmic model of Beaver et al. (16). As has
been reported by Robergs et al. (17) there is no significant difference between LA-T
detected by this method based on lactate concentration in venous and arterialized blood,
despite the differing absolute lactate concentrations between the two blood compartments.
The threshold workload was assessed from the intersection of the two linear segments (log
LA plotted vs log work load) and expressed also in relation to minute oxygen consumption
(VO,) and HR, as well as to the percentage of maximal work load (WL), VO, and HR.
The values of VO, and HR corresponding to LA-T were calculated by means of an
interpolation from the linear regression of VO, or HR vs WL. The catecholamine
thresholds (NA-T and A-T) were detected using the log-log transformation similarly as in
the case of LA-T.

The electromyographic activity (EMG) was simultaneously recorded from the rectus
femoris and soleus muscles. Myoelectric signals were recorded by means of monopolar
technique using surface electrodes (Medicotest Q-00-1-, Denmark) attached over the muscle
bellies after careful cleaning of the skin. In case of the soleus muscle, localized not so
superficially as other muscles, the active electrode was fixed at the carefully chosen part of
the calf, were the soleus muscle is covered only by the electrically neutral ligament of the
gastrocnemius. The myoelectrical activity was assessed using the EM-10 RI EMG-analyser
(Mega Electronics Ltd., Kuopio, Finland) which fully rectifies and integrates the 20— 500
Hz band and gives a root mean square of raw EMG signals (rms-EMG). The EMG

signals were processed by the EMG device with a time constant of 120 ms (Remes et al.
1984).

Statistical Analysis

Statistical significance of differences between the means was tested with an analysis of variance
followed by the Student’s test. Significance was set at the 0.05 level of confidence. All data are
reported as means+ SE.
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RESULTS

The rms-EMG activity recorded from the rectus femoris and soleus muscles
during incremental exercise, as well as A and NA concentrations, started to rise
immediately after the beginning of exercise and then increased gradually with
increasing work intensity until exhaustion, revealing the exponential increase
similar as blood lactate concentration (Fig. / and Fig. 2). The ms-EMG activity
derived from rectus femoris and soleus muscles correlated significantly
(P <0.01) with blood lactate concentrations during incremental exercise
(Fig. 3). However, only slight increases in EMG were found during exercise of
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Fig. 1. Average (+ SE) ms-EMG activity of the rectus femoris and soleus muscles and blood lactate
(LA) concentrations during incremental exercise (n = 28). The mean threshold exercise intensity

detected for EMG in respective muscle group and for blood LA concentrations is indicated here by
the arrows as EMG-T and LA-T, respectively.
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Fig. 3. The relationship between blood lactate concentration and rms-EMG activity of the rectus
femoris (n = 16) and soleus (n = 162) muscles during progressive exercise.

low and moderate intensities. Then, the sudden, nonproportional rise in EMG
occurred at the intensities corresponding to the LA-T. Using the log-log plot,
the mean threshold WL was detected for the rms-EMG for both of the
examined muscles. The mean threshold work load for EMG activity (EMG-T)
of the rectus femoris and soleus were 176.3+87 W and 171.8+89 W,
respectively, and for LA-T 164.0+ 6.9 W. No significant differences were found
between absolute and relative threshold VO,, HR and WL at LA-T and
EMG-T for rectus f. and solues muscles (Fig. 4). The A-T and Na-T threshold
work loads, measured in a group of 7 subjects, were 179.8+5.2 W and
178.0+ 5.5 W, respectively, and they also did not differ significantly from the
LA-T (179.7+ 6.2 W) (Fig. 2). No significant correlations were found between
the threshold values measured in this study.
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DISCUSSION

The results of the present study demonstrated a progressive rise in
electromyographic activity of different muscle groups during incremental
exercise, confirming the known phenomenon of increasing EMG with
development of fatigue. The rise in rms-EMG with increasing exercise intensity
revealed an exponental pattern, similar to that in blood lactate and plasma
catecholamine concentrations. The similarity of the time-courses of changes in
EMG to that of LA during incremental exercise is emphasized by close
correlations between the rms-EMG determined from rectus fenoris, as well as
soleus muscles, and the blood lactate concentrations. These data are in
agreement with the previously reported by Chwalbifiska-Moneta ez al. (18)
showing a direct relationship between blood lactate and EMG activity in leg
muscles fully engaged in dynamic bicycling, and also in nonworking muscle.

During the test performed in the present study both the individual EMG
activity and catecholamine concentrations altered negligibly up to the exercise
intensities approaching LA-T, and then increased abruptly. This apparent
trend for nonlinearity between the EMG activity and exercise intensity is in
agreement with previous findings (11, 18, 19). The composition of the muscle
(20) does not seem to influence the pattern of the EMG changes during
incremental exercise, since no significant differences were found in the present
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study between the EMG-T determined for soleus muscle (rich in slow-twitch
fibers) and the EMG-T for the rectus f. muscle (mainly composed of fast-twitch
fibers). The calculated thresholds of EMG and plasma catecholamine occurred
at almost the same exercise intensity as LA-T both when expressed in absolute
and relative work load values. The apparent coincidence of lactate and
catecholamine thresholds does confirm earlier data (1, 3, 5). From the
comparison of the sequence in time of the lactate, catecholamine and EMG
thresholds it appears that the LA-T is only tending to occur earlier, 1.e. at the
lower exercise intensities, than the others. The individual analysis of all the
thresholds determined in the study indicated that the LA-T does not always
precede the EMG-T or catecholamine-thresholds, as it was also suggested
previously (18). However, Taylor and Bronks (21) have reported that lactate
threshold had already occurred before the EMG breakpoint during
incremental treadmil running. Thus, the equation of the causal relationships
between the thresholds remains difficult to answer.

Anyway, the close relationship found in the present study between blood
lactate concentration and rms-EMG activity of different muscles during
progressive exercise supports the suggestion that local factors such as lactate
accumulation in the muscle and the associated metabolic changes play
a dominant role in acceleration of muscle fatigue, and subsequent increase in
the EMG of working muscles (22, 23). The threshold lactate accumulation in
the muscles, preceeding the blood lactate threshold, reported by Ivy et al. (24)
and Chwalinska-Moneta et al. (25) may be the reason for EMG-T appearance.
However, such a conclusive statement about the mechanism evoking the
threshold increase in EMG activity during exercise is still not possible. Since
a generalized response of skeletal muscles to physical work, including those
which are not directly engaged in exercise, has been shown in our previous
study (18) it might indicate a prominent contribution of the central component
in muscle motor unit recruitment, for example the dispersed activation of brain
cortex motoneurons during physical exercise. In turn, the stimulating effect of
the efferent impulses derived from the cortical motor centres also on the
control systems of catecholamine release during exercise cannot be excluded,
since the important role of central command for the sympathetic nervous
system response to various types of exercise has been demonstrated (26).

Furthermore, it can be speculated that there exists a fatigue-feedback
mechanism via the central nervous system from and to the working muscles
(27). The neural afferent signals from muscle metabolic receptors might
participate not only in the stimulation of the EMG activity during exercise but
also in the activation of catecholamine release (28, 29).
~ In conclusion, the present study demonstrated an exponential pattern of
Increase in EMG activity during progressive exercise, parallel to that in blood
lactate and plasma catecholamine concentrations. The EMG threshold
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corresponded closely to the rapid, nonlinear increases in blood lactate and
plasma catecholamine changes of the threshold character.
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