Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 54 | 4 |
Tytuł artykułu

Insecticidal activity - a new bioactive property of the cyanobacterium Fischerella

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cyanobacterial biofilms serve as food and shelter for benthic invertebrates, such as juvenile insects. Chironomids are often the most widely distributed and abundant insect larvae in freshwater ecosystems. As a consequence of high grazing pressure, effective defence mechanisms can be expected in biofilm-forming organisms. The presence of chemical defence was studied in 12 axenic and monoxenic cyanobacterial species. Flakes of cyanobacterial biofilms were offered to Chironomus riparius (Meigen) over a period of 8 days. Mortality and body-length of the surviving animals were used as indicators for the toxicity of the cyanobacteria and their suitability as food. Toxicity and inhibition of larval growth were found for several cyanobacteria tested. Fischerella sp. (ATCC 43239) was the most active and caused 100% mortality in Chironomus larvae within 24 h. Mortality was also high (87%) for larvae fed with Aphanothece sp. Moderate toxicity (40–60% mortality) was found for Calothrix sp. (PCC 7507), C. braunii Bornet et Flahault, C. thermalis (Schwabe) Hansgirg and a cyanobacterium of the LPP group designated JU 5. Mortality of 7–33% was observed for Calothrix parietina (Nägeli) Thuret, Oscillatoria brevis (Kützing) Gomont, Cylindrospermum sp., Nostoc sp., Calothrix anomala Mitra and a cyanobacterium of the LPP group designated 5 KB. Differences depending on the cyanobacterial food offered were also seen in the lengths of surviving larvae. Fischerella sp. (ATCC 43239) was studied in more detail to chemically characterise the observed insecticidal activity. The insecticidal activity could be extracted with 60% aq. methanol from the fresh biomass and caused 100% mortality in Chironomus. A literature survey was performed on the bioactive compounds so far isolated and characterised from Fischerella and related Stigonematales. It is noticeable that no insecticidal activity has been shown for any of these compounds yet. The newly found insecticidal property of Fischerella may lead to the identification of bioactive compounds which may be important as chemical defence against insect grazers.
Wydawca
-
Rocznik
Tom
54
Numer
4
Opis fizyczny
p.653-662,fig.,ref.
Twórcy
autor
  • University of Zurich, Seestrasse 187, CH-8802 Kilchberg, Switzerland
autor
Bibliografia
  • Ali A. 1990 – Seasonal changes of larval food and feeding of Chironomus crassicaudatus (Diptera: Chironomidae) in a subtropical lake – J. Am. Mosq. Control. Assoc. 6: 84–88.
  • Armitage P., Cranston P.S., Pinder L.C.V. 1995 – The Chironomidae. The biology and ecology of non-biting midges – Chapman and Hall, London.
  • Becher P.G., Jüttner F. 2005 – Insecticidal compounds of the biofilm-forming cyanobacterium Fischerella sp. (ATCC 43239) – Environ. Toxicol. 20: 363–372.
  • Benke A.C. 1998 – Production dynamics of riverine chironomids: Extremely high biomass turnover rates of primary consumers – Ecology, 79: 899–910.
  • Bonjouklian R., Moore R.E., Patterson G.M.L. 1988 – Acid-catalyzed reactions of hapalindoles – J. Org. Chem. 53: 5866–5870.
  • Bonjouklian R., Smitka T.A., Doolin L.E., Molloy R.M., Debono M., Shaffer S.A., Moore R.E., Stewart J.B., Patterson G.M.L. 1991 – Tjipanazoles, new antifungal agents from the blue-green alga Tolypothrix tjipanasensis – Tetrahedron, 47: 7739–7750.
  • Brock E.M. 1960 – Mutualism between the midge Cricotopus and the alga Nostoc – Ecology, 41: 474–483.
  • Brook A.J. 1954 – The bottom-living algal flora of slow sand filter beds of waterworks – Hydrobiologia, 6: 333–351.
  • Carletti I., Banaigs B., Amade P. 2000 – Matemone, a new bioactive bromine-containing oxindole alkaloid from the Indian Ocean sponge Lotrochota purpurea – J. Nat. Prod. 63: 981–983.
  • Doan N.T., Rickards R.W., Rothschild J.M., Smith G.D. 2000 – Allelopathic actions of the alkaloid 12-epi-hapalindole E isonitrile and calothrixin A from cyanobacteria of the genera Fischerella and Calothrix – J. Appl. Phycol. 12: 409–416.
  • Doan N.T., Stewart P.R., Smith G.D. 2001 – Inhibition of bacterial RNA polymerase by the cyanobacterial metabolites 12-epi-hapalindole E isonitrile and calothrixin A – FEMS Microbiol. Lett. 196: 135–139.
  • Etchegaray A., Rabello E., Dieckmann R., Moon D.H., Fiore M.F., von Döhren H., Tsai S.M., Neilan B.A. 2004 – Algicide production by the filamentous cyanobacterium Fischerella sp. CENA 19 – J. Appl. Phycol. 16: 237–243.
  • Falch B.S., König G.M., Wright A.D., Sticher O., Rüegger H., Bernardinelli G. 1993 – Ambigol A and B: New biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischerella ambigua – J. Org. Chem. 58: 6570–6575.
  • Frouz J., Ali A., Lobinske R.J. 2004 – Laboratory evaluation of six algal species for larval nutritional suitability of the pestiferous midge Glyptotendipes paripes (Diptera: Chironomidae) – J. Econom. Entomol. 97: 1884–1890.
  • Ghasemi Y., Yazdi M.T., Shafiee A., Amini M., Shokravi S., Zarrini G. 2004 – Parsiguine, a novel antimicrobial substance from Fischerella ambigua – Pharma. Biol. 42: 318–322.
  • Gross E.M., Wolk C.P., Jüttner F. 1991 – Fischerellin, a new allelochemical from the freshwater cyanobacterium Fischerella muscicola – J. Phycol. 27: 686–692.
  • Hagmann L., Jüttner F. 1996 – Fischerellin A, a novel photosystem-II-inhibiting allelochemical of the cyanobacterium Fischerella muscicola with antifungal and herbicidal activity – Tetrahedron Lett. 37: 6539–6542.
  • Harrison S.S.C., Hildrew A.G. 1998 – Patterns in the epilithic community of a lake littoral – Freswat. Biol. 39: 477–492.
  • Hart D.D. 1985 – Grazing insects mediate algal interactions in a stream benthic community – Oikos, 44: 40–46.
  • Hill W.R., Knight A.W. 1987 – Experimental analysis of the grazing interaction between a mayfly and stream algae – Ecology, 68: 1955–1965.
  • Huber U., Moore R.E., Patterson G.M.L. 1998 – Isolation of a nitrile-containing indole alkaloid from the terrestrial blue-green alga Hapalosiphon delicatulus – J. Nat. Prod. 61: 1304–1306.
  • Jimenez J.I., Huber U., Moore R.E., Patterson G.M.L. 1999 – Oxidized welwitindolinones from terrestrial Fischerella spp. – J. Nat. Prod. 62: 569–572.
  • Johnson R.K., Boström B., van de Bund W. 1989 – Interactions between Chironomus plumosus (L.) and the microbial community in surficial sediments of a shallow eutrophic lake – Limnol. Oceanogr. 34: 992–1003.
  • Jüttner F., Wu J.-T. 2000 – Evidence of allelochemical activity in subtropical cyanobacterial biofilms of Taiwan – Arch. Hydrobiol. 147: 505–517.
  • Klein D., Daloze D., Braekman J.C., Hoffmann L., Demoulin V. 1995 – New hapalindoles from the cyanophyte Hapalosiphon laingii – J. Nat. Prod. 58: 1781–1785.
  • Lamberti G.A., Resh V.H. 1983 – Stream periphyton and insect herbivores: An experimental study of grazing by a caddisfly population – Ecology, 64: 1124–1135.
  • Lampert W. 1987 – Laboratory studies on zooplankton-cyanobacteria interactions – N.Z.J. Mar. Freshwat. Res. 21: 483–490.
  • Lin L.-Z., Cordell G.A., Ni C.-Z., Clardy J. 1990 – Two oxindole alkaloids from Gelsemium elegans – Phytochemistry, 29: 3013–3017.
  • Moore R.E., Cheuk C., Patterson G.M.L. 1984 – Hapalindoles: new alkaloids from the blue-green alga Hapalosiphon fontinalis – J. Am. Chem. Soc. 106: 6456–6457.
  • Moore R.E., Cheuk C., Yang X.-Q.G., Patterson G.M.L., Bonjouklian R., Smitka T.A., Mynderse J.S., Foster R.S., Jones N.D., Swartzendruber J.K., Deeter J.B. 1987a – Hapalindoles, antibacterial and antimycotic alkaloids from the cyanophyte Hapalosiphon fontinalis – J. Org. Chem. 52: 1036–1043.
  • Moore R.E., Yang X.-Q.G., Patterson G.M.L. 1987b – Fontonamide and anhydrohapaloxindole A, two new alkaloids from the blue-green alga Hapalosiphon fontinalis – J. Org. Chem. 52: 3773–3777.
  • Moore R.E., Yang X.-Q.G., Patterson G.M.L., Bonjouklian R., Smitka T.A. 1989 – Hapalonamides and other oxidized hapalindoles from Hapalosiphon fontinalis – Phytochemistry, 28: 1565–1567.
  • Papke U., Gross E.M., Francke W. 1997 – Isolation, identification and determination of the absolute configuration of fischerellin B. A new algicide from the freshwater cyanobacterium Fischerella muscicola (Thuret) – Tetrahedron Lett. 38: 379–382.
  • Park A., Moore R.E., Patterson G.M.L. 1992 – Fischerindole L, a new isonitrile from the terrestrial blue-green alga Fischerella muscicola – Tetrahedron Lett. 33: 3257–3260.
  • Peterson C.G., Vormittag K.A., Valett H.M. 1998 – Ingestion and digestion of epilithic algae by larval insects in a heavily grazed montane stream – Freshwat. Biol. 40: 607–623.
  • Porter K.G. 1973 – Selective grazing and differential digestion of algae by zooplankton – Nature, 244: 179–180.
  • Schwartz R.E., Hirsch C.F., Springer J.P., Pettibone D.J., Zink D.L. 1987 – Unusual cyclopropane-containing hapalindolinones from a cultured cyanobacterium – J. Org. Chem. 52: 3704–3706.
  • Smith C.D., Zilfou J.T., Stratmann K., Patterson G.M.L., Moore R.E. 1995 – Welwitindolinone analogues that reverse P-glycoprotein-mediated multiple drug resistance – Mol. Pharmacol. 47: 241–247.
  • Smitka T.A., Bonjouklian R., Doolin L., Jones N.D., Deeter J.B., Yoshida W.Y., Prinsep M.R., Moore R.E., Patterson G.M.L. 1992 – Ambiguine isonitriles, fungicidal hapalindole-type alkaloids from three genera of blue-green algae belonging to the Stigonemataceae – J. Org. Chem. 57: 857–861.
  • Srivastava A., Jüttner F., Strasser R.J. 1998 – Action of the allelochemical, fischerellin A, on photosystem II - Biochim. Biophys. Acta, 1364: 326–336.
  • Stratmann K., Moore R.E., Bonjouklian R., Deeter J.B., Patterson G.M.L., Shaffer S., Smith C.D., Smitka T.A. 1994 – Welwitindolinones, unusual alkaloids from the blue-green algae Hapalosiphon welwitschii and Westiella intricata. Relationship to fischerindoles and hapalindoles – J. Am. Chem. Soc. 116: 9935–9942.
  • Takamura N., Iwakuma T., Aizaki M., Yasuno M. 1990 – Primary production of epiphytic algae and phytoplankton in the littoral zone of Lake Kasumigaura Japan – Mar. Microb. Food Webs, 4: 239–255.
  • Weber C.I. 1993 – Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. EPA/600/4-90/027F. Environmental Monitoring Systems Laboratory, Office of Research and Development, U.S. Environmental Protection Agency; Cincinnati, Ohio, (http://www.epa.gov/waterscience/wet/atx.pdf.).
  • Wright A.D., Papendorf O., König G.M. 2005 – Ambigol C and 2,4-dichlorobenzoic acid, natural products produced by the terrestrial cyanobacterium Fischerella ambigua – J. Nat. Prod. 68: 459–461.
  • Yamaki H., Sitachitta N., Sano T., Kaya K. 2005 – Two new chymotrypsin inhibitors isolated from the cyanobacterium Microcystis aeruginosa NIES-88 – J. Nat. Prod. 68: 14–18.
  • Zhang X., Smith C.D. 1996 – Microtubule effects of welwistatin, a cyanobacterial indolinone that circumvents multiple drug resistance – Mol. Pharmacol. 49: 288–294.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-7af12a79-5aa6-4772-8cd3-96e81bddcfb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.