Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 54 | 1 |
Tytuł artykułu

Periphytic algal communities: a comparison of Typha angustifolia L. and Chara tomentosa L. beds in three shallow lakes [West Poland]

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The examination of the composition and dynamics of periphytic communities took place in three lakes of similar morphometry – Lake Wielkowiejskie, Budzyńskie and Dębiniec, situated in the Wielkopolska region, (Western Poland). These lakes are typical macrophytedominated, shallow and polymictic water bodies. Periphyton was collected from two macrophytecovered stations, including the rush vegetation station (Typha angustifolia L.) and the stonewort stand (Chara tomentosa L.) in each examined lake. The material was sampled three times in 2003, including the spring (April), summer (July) and autumn (September) seasons, from the same parts of the lakes. The aim of the study was to find out whether there is an influence of particular macrophyte species, differing spatially and morphologically and representing two different ecological types of aquatic vegetation, on the development of particular periphytic species. There was also an attempt at answering the question of what is more important in the structuring of the periphytic communities – the specific architecture of the macrophyte substratum or the physical-chemical features of a particular lake? The concentrations of chlorophyll a, TN, TP and TOC in water were higher in the Chara beds compared with the Typha stations in most cases. The Shannon-Weaver biodiversity index of periphytic algae revealed very high values in all lakes and amounted in the Typha and Chara stands to the mean values 4.68 and 3.87 respectively in Wielkowiejskie Lake, 3.32 and 4.39 in Budzyńskie Lake and 3.08 and 3.91 in Dębiniec Lake. Furthermore, the standardized index of evenness exhibited the greatest differentiation in the Typha station with the highest (0.76) in Wielkowiejskie and the lowest (0.52) in Dębiniec Lake. The analysis of the growth-forms of periphytic communities showed slightly higher diversity of slowly moving and stalked diatoms in most cases at the Chara stations of all studied lakes. The similarity between periphytic communities in the Typha and Chara stands of the examined lakes, compared using the Ward method and Euclidean distance measure, revealed a stronger relationship within a particular habitat but not a lake. The clearest pattern of similarity grouping a particular habitat was obtained for the summer period, when macrophytes reached their optimum. The Jaccard similarity index confirmed the differentiation of both examined habitats, reaching the mean value of 0.34. Based on the biomass of single periphytic species, habitat selectivity for seven species was found. Significantly higher biomass was obtained in the case of the rush zone for only one algae species – Eunotia lunaris (Ehr.) Grun. In the Chara bed six species revealed significantly higher biomasses – Cosmarium regnelli Wille, Oocystis marssonii Lemm., Ulotrix zonata (Weber et Moor) Kütz., Scenedesmus acuminatus (Lagerh.) Chod., Merismopedia elegans A. Braun and Phacus orbicularis Hübner. The habitat preference of periphytic communities to different macrophyte species may be due to the environmental factors, including the specific architecture of a particular macrophyte substrate such as density or texture of the plant surface. Furthermore, seasonality, as well as physical-chemical parameters may structure periphytic communities within the littoral zone of lakes.
Wydawca
-
Rocznik
Tom
54
Numer
1
Opis fizyczny
p.15-27,fig.,ref.
Twórcy
autor
  • Adam Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland
Bibliografia
  • Ács É., Borsodi A.K., Makk J., Molnár P., Mózes A., Rusznyák A., Reskóné M. N., Kiss K. T. 2003 – Algological and bacteriological investigations on reed periphyton in Lake Velencei, Hungary – Hydrobiologia, 506–509 (1–3): 549–557.
  • Albay M., Akcaalan R. 2003 – Comparative study of periphyton colonisation on common reed (Phragmites australis) and artificial substrate in a shallow lake, Manyas, Turkey – Hydrobiologia, 506/1: 531–540.
  • Basu B. K., Kalff J., Pinel-Alloul B. 2000 – The influence of macrophyte beds on plankton communities and their export from fluvial lakes in the St Lawrence River – Freshwat. Biol. 45: 373–382.
  • Berry H. A., Lembi C. A. 2000 – Effects of temperature and irradiance on the seasonal variation of a Spirogyra (Chlorophyta) population in a Midwestern Lake (U.S.A.) – J. Phycol. 36: 841–851.
  • Blindow I. 1987 – The composition and density of epiphyton on several species of submerged macrophytes – the neutral substrate hypothesis tested – Aquat. Botany, 29: 157–168.
  • Burns C. W., Dodds A. 1999 – Food limitation, predation and allelopathy in a population of Daphnia carinata – Hydrobiologia, 400: 41–53.
  • Celewicz S., Klimko M., Kuczyńska-Kippen N., Nagengast B., Gramowska H., Sobczyński T. 2004 – Wpływ zróżnicowanej struktury płatów roślinnych na zespoły planktonowe trzech płytkich jezior Wielkopolski [The influence of the differentiated structure of the macrophyte beds on the plankton communities of three shallow lakes of Wielkopolska] – Bad. Fizjograf. Nad Pol. Zach. Seria B – Botanika, 53: 95–106 (in Polish).
  • Conde-Porcuna J. M. 2000 – Relative importance of competition with Daphnia (Cladocera) and nutrient limitation on Anuraeopsis (Rotifera) population dynamics in a laboratory study - Freshwat. Biol. 44: 423–430.
  • Cyr H., Downing J. A. 1988 – The abundance of phytophilous invertebrates on different species of submerged macrophytes – Freshwat. Biol. 20: 365–37.
  • Delbecque E. J. P. 1983 – A comparison of the periphyton of Nuphar lutea and Nymphaea alba. The distribution of diatoms on the undersides of floating leaves. (In: Periphyton of Freshwater Ecosystems, Ed. R. G. Wetzel) – Dr W. Junk Publishers, The Hague, pp. 41–47.
  • Dorgelo J., Heycoop M. 1985 – Avoidance of macrophytes by Daphnia longispina – Verh. Internat. Verein. Limnol. 22: 3369–3372.
  • Duggan I. C. 2001 – The ecology of periphytic rotifers – Hydrobiologia, 446/447: 139–148.
  • Eminson D. F., Moss B. 1980 – The composition and ecology of periphyton communities in freshwaters. I. The influence of host type and external environment on community composition – Br. Phycol. J. 15: 429–446.
  • Forsberg C., Kleiven S., Willen T. 1990 – Absence of allelopathic effects of Chara on phytoplankton in situ – Aquatic Botany, 38: 289–294.
  • Gons H. J. 1979 – Periphyton in Lake Vechten, with emphasis on biomass and production of epiphytic algae – Hydrobiol.–Bull. 13 (2–3): 116.
  • Gopal B., Goel U. 1993 – Competition and allelopathy in aquatic plant communities – Bot. Rev. 59: 155–219.
  • Gross E. M., Erhard D., Ivanyi E. 2003 – Allelopathic activity of Ceratophyllum demersum L. and Najas marina ssp. intermedia (Wolfgang) Casper – Hydrobiologia, 506–509: 583–589.
  • Gross E. M., Sűtfeld R. 1994 – Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatum L – Acta Horticultura, 381: 710–716.
  • Hameed H. A. 2003 – The colonization of periphytic diatom species on artificial substrates in the Ashar canal, Basrah, Iraq – Limnologica, 33: 54–61.
  • James M. R., Hawes I., Weatherhead M. 2000 – Removal of settled sediments and periphyton from macrophytes by grazing invertebrates in the littoral zone of a large oligotrophic lake – Freshwater Biology, 44: 311–326.
  • Jańczak J., Brodzińska B., Kowalik A., Sziwa R. 1996 – Atlas of the Lakes of Poland – Bogucki Wydawnictwo Naukowe, Poznań, pp. 13–268.
  • Jones J. I., Moss B., Eaton J. W., Young J. O. 2000 – Do submerged aquatic plants influence periphyton community composition for the benefit of invertebrate mutualists? – Freshwater Biology, 43: 591–604.
  • Jones J. I., Young J. O., Haynes G. M., Moss B., Eaton J. W., Hardwick K. J. 1999 – Do submerged aquatic plants influence their periphyton to enhance the growth and reproduction of invertebrate mutualists? – Oecologia, 120: 463–474.
  • Jürgens K., Arndt H., Rothhaupt K.O. 1994 – Zooplankton-mediated changes of bacterial community structure – Microb. Ecol. 27: 27–42.
  • Kairesalo T., Tátrai I., Luokkanen E. 1998 – Impacts of waterweed (Elodea canadensis Michx) on fish-plankton interactions in the lake littoral – Verh. Internat. Verein. Limnol. 26: 1846–1851.
  • Kleiven S., Szczepańska W. 1988 – The effects of extracts from Chara tomentosa and two other aquatic macrophytes on seed germination – Aquatic Botany, 32: 193–198.
  • Krebs Ch. J. 2001 – Ecology. The Experimental Analysis of Distribution and Abundance – Wydawnictwo Naukowe PWN, Warszawa, 734 pp.
  • Krebs Ch. J. 1989 – Ecological Methodology – Harper & Row, New York, 654 pp.
  • Kuczyńska-Kippen N., Messyasz B., Nagengast B., Celewicz S., Klimko M.A. 2005 – Comparative study of periphyton communities on the reed complex and Chara tomentosa in three shallow lakes of Wielkopolska area, Poland – Biologia Bratislava, 60 (4): 1–7.
  • Kuczyńska-Kippen N., Nagengast B. (in press) – The influence of the spatial structure of hydromacrophytes and differentiating habitat on the structure of the rotifer and cladoceran communities – Hydrobiologia.
  • Kuhn D. L., Plafkin J. L., Cairns J., Lowe R. L. 1981 – Qualitative characterization of aquatic environments using diatom life-form strategies – Trans. Am. Microsc. Soc. 100: 165–182.
  • Margalef R. 1957 – Information theory in ecology – Gen. Syst. 3: 36–71.
  • Műller U. 1999 – The vertical zonation of adpressed diatoms and other epiphytic algae on Phragmites australis – Eur. J. Phycol. 34: 487–496.
  • Nakai S., Inoue Y., Hosomi M., Murakami A. 1999 – Growth inhibition of bluegreen algae by allelopathic effect of macrophytes – Wat. Sci Tech. 39 (8): 47–53.
  • Ondok J. P. 1978 – Radiation climate in fish pond littoral plant communities (In: Pond littoral ecosystems – Structure and functioning, Eds. D. Dykyjová, J. Květ) – Ecological Studies, 28: 113–125.
  • Paterson M. 1993 – The distribution of microcrustacea in the littoral zone of a freshwater lake – Hydrobiologia, 263: 173–183.
  • Pieczyńska E., Spodniewska I. 1963 – Occurrence and colonisation of periphyton organisms – Ekol. Pol. Seria A. 11: 533–545.
  • Pieczyńska E. (ed.) 1976 – Selected problems of lake littoral ecology – University of Warsaw, Warszawa, pp. 55–68.
  • Pielou E.C. 1975 – Ecological diversity – Wiley Intersci. New York, 385 pp.
  • Raffaelli D., Hall S., Emes C., Manly B. 2000 – Constraints on body size distributions: an experimental approach using a small-scale system – Oecologia, 122: 389–398.
  • Roos P. J. 1983 – Dynamics of periphytic communities (In: Periphyton of freshwater ecosystems, Ed. R. G. Wetzel) – Junk Publishers, pp. 5–9.
  • Rosenzweig M. L. 1991 – Habitat selection and population interactions: the search for mechanism – The American Naturalist, 137: 5–28.
  • Rott E. 1981 – Some results from phytoplankton counting intercalibrations – Schweiz. Z. Hydrol. 43 (1): 34–62.
  • Sand Jensen K., Borum J. 1984 – Epiphyte shading and its effect of photosynthesis and diel metabolism of Lobelia dortmanna during the spring bloom in a Danish lake – Aquatic Botany, 20: 109–120.
  • Scheffer M. 2001 – Ecology of Shallow Lakes – Kluwer Academic Publishers. Dordrecht, Bosto, London, 357 pp.
  • Schriver P. J., Bøgestrand E., Jeppesen E., Søndergaard M. 1995 – Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: large scale enclosure experiments in a shallow eutrophic lake – Freshwat. Biol. 33: 255–270.
  • Sokal R. R. 1961 – Distance as a measure of taxonomic similarity – Syst. Zool. 10: 71–79.
  • Standard Methods for Examination of Water and Wastwater 1992 – American Public Health Association, New York, 1137 pp.
  • Starmach K. 1972 – Flora słodkowodna Polski. [Polish freshwater flora]. Chlorophyta III. Filamentous green algae – PWN Warszawa, 750 pp.
  • Stevenson R. J., Yangdong P. 2001 – Assessing environmental conditions in rivers and streams with diatoms (In: The Diatoms. Applications for the environmental and earth sciences, Eds. E. F. Stoermer, J. P. Smol) – Cambridge University Press, pp. 11–36.
  • Strickland J. D., Parsons T. R. 1972 – A practical handbook of seawater analysis (2nd edn) – Bull. Fish. Res. Bd Can. 167.
  • Theil-Nielsen J., Søndergaard M. 1999 – Production of epiphytic bacteria and bacterioplankton in three shallow lakes – Oikos, 86: 283–292.
  • Utermőhl H. 1958 – Zur vervollkornmnung der quantitativen phytoplankton – methodik – Mitt. Int. Ver. Theor. Angew. Limnol. 9: 1–38.
  • van den Berg J., Coops H., Noordhuis R., van Schie J., Simons J. 1997 – Macroinvertebrate communities in relation to submerged vegetation in two Chara-dominated lakes – Hydrobiologia, 342/343: 143–150.
  • Van Dijk G. M. 1993 – Dynamics and attenuation characteristics of periphyton upon artificial substratum under various light conditions and some additional observations on periphyton upon Potamogeton pectinatus – Hydrobiologia, 252: 143–161.
  • Wetzel R. G. 1983 – Periphyton of freshwater ecosystems. Proceeding of the First International Workshop on Periphyton of Freshwater Ecosystems. Developments in Hydrobiology. Vol. 17. – B. V. Junk Publishers, The Hague, 356 pp.
  • Wetzel R. G. 2001 – Limnology: Lake and River Ecosystem – Part 19: Land-water interface: attached microorganisms, littoral algae and zooplankton – Academic Press, San Diego, 1006 pp.
  • Wium-Andersen S., Anthoni U., Christophersen C., Hoen G. 1982 – Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes (Charales) – Oikos, 39: 187–190.
  • Zimba P. V., Hopson M. S. 1997 – Quantification of epiphyte removal efficiency from submersed aquatic plants – Aquatic Botany, 58: 173–179.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-79cf9280-1ab7-41cf-99e5-34278df3d6e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.