Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Activated blood platelets shed microparticles with procoagulant activity that probably participate in normal hemostasis. We have isolated spontaneously formed microparticles from human blood and analysed them for ultrastructure, antigenic profile, and biochemical composition. In transmission electron microscopy microparticles appeared as regular vesicles with a mean diameter of 300 nm (50-600 nm). In flow cytometry almost all microparticles reacted with fluorescein isothiocyanate (FITC) labeled antibody to platelet glycoprotein complex IIb-IIIa (GpIIb-IIIa) and with FITC-annexin V but only 40-50% of microparticles reacted with FITC-antibody to platelet glycoprotein Ib (GpIb). The latter result was confirmed by double labeling of microparticles with FITC-antibody to GpIIb-IIIa and phycoerythrin (PE) labeled antibody to GpIb. Large microparticles reacted better with anti-GpIb than the small ones. A decreased level of GpIb was also demonstrated by SDS/polyacrylamide gel electrophoresis of microparticles. Compositional studies indicated, that in terms of cholesterol and protein contents, microparticles resembled platelets rather than platelet membranes as previously thought. They are, however, deficient in certain components. Thus, in comparison to platelets, microparticles had reduced contents of sialic acid (by 56.4%), galactosamine (by 48.2%), glucosamine (by 22.4%), galactose by (11.8%) and fucose (by 21.6%). Mannose content was increased by 11.8%. Total phospholipids in microplatelets were lower by 17.8%. Glycerophospholipids only were affected with phosphatidylserine being decreased as much as by 43.2%. Neutral glycosphingolipids, gangliosides and ceramides in microparticles were reduced by half. We conclude that the biochemical composition of microparticles probably reflects previous activation of progenitor platelets
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.417-428,fig.
Twórcy
autor
- Institute of Hematology and Blood Transfusion, Warsaw, Poland
autor
autor
autor
Bibliografia
- 1. Zwaal, R.F.A., Comfurius, P. & Bevers, E.M (1992) Platelet procoagulant activity and microvesicle formation. Its putative role in he- mostasis and thrombosis. Biochim. Biophys. Acta 1180, 1-8.
- 2. Owens, M.R. (1994) The role of platelet microparticles in Hemostasis. Transf. Med. Revs. 8, 37-44.
- 3. Zwaal. R.F.A. & Schroit, A.J. (1997) Pathophysiological implications of membrane phospholipid asymmetry in blood cells. Blood 89, 1121-1132.
- 4. Sims, PJ., Faioni, E.M. & Wiedmer, T. (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J. Biol Chem. 263, 18205-18212.
- 5. Bevers, E.M., Comfurius, P., VanRijn, J.L.L.M., Hemker, H.C. & Zwaal R.F.A. (1982) Generation of prothrombin-converting activity and the exposure of phosphatidylserine at the outer surface of platelets. Eur. J. Biochem. 122. 429-436.
- 6. Pasquet, J.M., Dachary-Prigent, J. & Nurden, A.T. (1996) Calcium influx is a determining factor of calpain activation and microparticle formation in platelets. Eur. J. Biochem. 239, 647-654.
- 7. Hagerstrand, H., Bobrowska-Hagerstrand, M.f Lillsunde, I. & Isomma, B. (1996) Vesiculation induced by amphiphiles and ionophore A23187 in porcine platelets. Chem. Biol. Interact. 101, 115-126.
- 8. George, J.N., Pickett, E.B. & Heinz, R. (1986) Platelet membrane microparticles in blood bank fresh frozen plasma and cryoprecipitate. Blood 21,307-309.
- 9. Mizayaki, Y., Nomura, S., Miyake, T., Kagawa, H., Kitada, C., Taniguchi, H., Komiyama, Y., Fujimura, Y., Ikeda, Y. & Fukuhara, S. (1996) High shear stress can initiate both platelet aggregation and shedding of procoagulant containing microparticles. Blood 88.3456-3464.
- 10. Bode, A.P. & Miller, D.T. (1986) Analysis of platelet factor 3 in platelet concentrates stored for transfusion. Vox Sang. 51, 299-305
- 11. Bode, A.P., Orton, S.M., Frye, M.J. & Udis, B.J. (1991) Vesiculation of platelets during in vitro aging. Blood 77. 887-895.
- 12. Abrams, C.S., Ellison, N., Budzynski, A.Z. & Shattil, S.J. (1990) Direct detection of activated platelets and platelet-derived micropar- ticles in humans. Blood 75, 128-138.
- 13. George, J.N., Pickett, E.B. & Saucerman, S. (1986) Platelet surface glycoproteins: Studies on resting and activated platelet and platelet membrane microparticles in normal subjects, and observations in patients during adult respiratory distress syndrome and cardiac surgery. J. Clin Invest. 78. 340-348.
- 14. Wun, T., Paglieroni, T. & Holland, P. (1994) Prolonged circulation of activated platelets following plasmapheresis. J. Clin. Apheresis 99, 10-16.
- 15. Frojmovic, M. & Wong. T. (1991) Dynamic measurements of the platelet membrane glycoprotein llb-IIIa receptor for fibrinogen by flow cytometry. Platelet size-dependent sub- populations. Biophys. J. 59, 828-837.
- 16. Siljander, P., Carpen, 0. & Lassila, R. (1996) Platelet-derived microparticles associate with fibrin during thrombosis. Blood 87, 4651- 4663.
- 17. Zwaal, R.F.A., Bevers, E.M., Comfurius, P., Rosing, J. & Tilly, R.H.J. (1989) Loss of membrane phospholipid assymetry during activation of blood platelets and sickled red cells; mechanism and physiological significance. Mol Cell Biochem. 91, 23-31
- 18. Sims, PJ., Wiedmer, T., Esmon, CT., Weiss, HJ. & Shattil, SJ. (1989) Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: An isolated defect in platelet procoagulant activity. J. Biol. Chem. 264, 17049-17057.
- 19. Tans, G., Rosing, J., Thomassen, M.C., Heeb, M.J., Zwaal. R.F.A. & Griffin, J.H. (1991) Comparison of anticoagulant and procoagulant activities of stimulated platelets and plateletderived microparticles. Blood 77, 2641- 2648.
- 20. Dahlbàck, B., Wiedmer, T. & Sims, P.J. (1992) Binding of anticoagulant vitamin K-dependent protein S to plateletrderived microparticles. Biochemistry 31, 12769-12777.
- 21. Owens, M.R., Holme, S. & Cardinali. S. (1992) Platelet microvesicle adhere to subendothe- lium and promote adhesion of platelets. Thrombosis Res. 66, 247-258.
- 22. Holme, P.A, Solum, N.O., Brostad, F., Peder- sen, T. & Kveine, M. (1998) Microvesicles bind soluble fibrinogen, adhere to immobilized fibrinogen and coaggregate with platelets. Thrombosis & Haemostasia 79, 389-394.
- 23. Chang, C.-P., Zhao, J., Wiedmer, T. & Sims, P.J. (1993) Contribution of platelet micropar- ticle formation and granule secretion to the transmembrane migration of phosphatidylser- ine. J. BiolI Chem. 268, 7171-7178.
- 24. Dachary-Prigent, J., Freyssinet, J-M., Pasquet, J.-M., Carrón, J.-C. & Nurden, A.T. (1993) An- nexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: A flow cytometry study showing a role for free sulfhydryl groups. Blood 81, 2554-2565.
- 25.Sandberg, H., Andersson, L.-O. & Hoglund, S. (1982) Isolation and characterization of lipid- protein particles containing platelet factor 3 released from human platelets. Biochem. J. 203, 303-311.
- 26. George, J.N., Pickett, E.B. & Heinz, R. (1988) Platelet membrane glycoprotein changes during the preparation and storage of platelet concentrates. Transfusion 28, 123-126.
- 27. Holme, P.A., Roger, M., Solum, N.O., Bros- stad, F.. Larsen, A.M. & Hovig, T. (1996) Glycoprotein llb-IIIa on plateletKlerived microparticles, and microparticle structures studied by electron microscopy, confocal laser microscopy and crossed radio-immunoelectrophoresis. Platelets 7, 207-214.
- 28. Zdebska, E., Woźniak, J., Dzieciątkowska, A., & Kościelak, J. (1997) In comparison to progenitor platelets, microparticles are deficient in Gplb antigen, some carbohydrates phospa- tidylserine, phosphatidylcholine, and gly- cosphingolipids. Glycoconjugate J. 14 (Supplement) S101.
- 29. Bhandaru, R.R., Srnivasan, S.R., Paraga- onkar, P.S. & Berenson, G.S. (1977) A simple colorimetric micromethod for determination of serum cholesterol. Lipids 12,1078-1080.
- 30. Lowry, R.R. & Tinsley, I.J. (1974) A simple sensitive method for lipid phosphorus measurements. Lipids 9. 491-492.
- 31. Higgins, T.J. (1984) Simplified fluorimetric assay for sphingosine bases. J. Lipid Res. 25, 1007-1009.
- 32. Zdebska, E., Soszyńska, B., Dobrowolski, Z. & Kościelak, J. (1996) The levels of glycosphin- golipids, ceramides, sialic acid and glycogen are changed in plasma membranes of rat platelets harvested during recovery from immune- mediated thrombocytopenia. Acta Biochim. Polon. 43, 547-556.
- 33. Saito, T. & Hakomori, S.-I. (1971) Quantitative isolation of total glycosphingolipids from animal cells. J. Lipid Res. 12. 257-259.
- 34. Leray, C., Pelletier, X. & Hemmendinger, S. (1987) Thin-iayer chromatography of human platelet phospholipid with fatty acid analysis. J. Chromatogr. 420, 411-416.
- 35. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685.
- 36. Fox, J.E.B., Austin, C.D., Reynolds, C.C. & Stef fen, P.K. (1991) Evidence that agonistr induced activation of calpain causes the shedding of procoagulant-containing microvesicles from the membrane of aggregating platelets. J. Biol. Chem. 266, 13289-13295.
- 37. Basse, F., Gaffet, P. & Bienvenüe, A. (1994) Correlation between inhibition of cytoskeleton proteolysis and anti-vesiculation effect of cal- peptin during A23187-induced activation of human platelets: are vesicles shed by filopod fragmentation? Biochim. Biophys. Acta 1190, 217-224.
- 38. Jamieson, G.A. (1997) Pathophysiology of platelet thrombin receptor. Thrombosis Hae- mostasis 78, 242-246.
- 39. Clemetson, K.J. (1997) Platelet GPIb-V-IX complex. Thrombosis & Haemostasis 78, 266-270.
- 40. Loscalzo, J. & Handin R.I. (1992) Platelet gly- cocalicin. Methods Enzymol 215, 289-294.
- 41. Tsuji, T., Tsunehisa, S., Watanabe, Y., Yama- moto, K., Tohyama, H. & Osawa T. (1983) Tne carbohydrate moiety of human platelet glyco- calicin. The structure of the major ser/thr- linked sugar chain. J. Biol Chem. 258, 6335-6339.
- 42. Barber, A.J. & Jamieson, G.A. (1970) Isolation and characterization of plasma membranes from human blood platelets. J. Biol. Chem. 245,6357-6365.
- 43. Han, X., Gubitosi-Klug, R.A., Collins, B.J. & Gross, R.W. (1996) Alterations in individual molecular species of human platelet phospholipids during thrombin stimulation: elec- trospray ionization mass spectrometry- facilitated identification of the boundary conditions for the magnitude and selectivity of thrombin-induced platelet phospholipid hydrolysis. Biochemistry 35, 5822-5832.
- 44. Du, X., Harris, S.J., Tetaz, T.T., Ginsberg, M.H. & Berndt, M.C. (1994) Association of a phospholipase A2 (14-3-3 protein) with the platelet glycoprotein Ib-IX complex. J. Biol Chem 269, 18287-18290.
- 45. Du, X., Fox, J.E. & Pei, S. (1996) Identification of a binding sequence for the 14-3-3 protein with the cytoplasmic domain of the adhesion receptor, platelet glycoprotein Iba. J. Biol. Chem. 271,7362-7367.
- 46. Sato, T., Aoki, J., Nagai, Y., Dohmae, N., Takio, K., Doi, T., Arai, H. & Inoue K. (1997) Serine phospholipid-specific phosp.holipase A that is secreted from activated platelets. A new member of the lipase family. J. BioL Chenu 272, 2192-2198.
- 47. Ballou, L.R., Laulederkind, S.J.F., Rosloniec, E.F. & Raghow, R. (1996) Ceramide signaling and the immune response. Biochim. Biophys. Acta 1301,273-287.
- 48. Venable, M.E., Lee, J.Y., Smyth, M.J., Bielawska, A. & Obeid, L.M. (1995) Role of ceramide in cellular senescense. J. Biol Chem. 270, 30701-30708.
- 49. Simons, K. & Ikonen, E. (1997) Functional rafts in cell membranes. Nature 387, 569- 572.
- 50. Yamamura, S., Handa, K. & Hakomori, S.-I. (1997) A close association of with c-Src and Rho in G^y-enriched microdomains at the B16 melanoma cell surface membrane: A preliminary note. Biochem. Biophys. Res. Commun. 236, 218-222.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-7341c6d9-e7e8-4001-9d1c-6852df941349