Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 58 | 3 |
Tytuł artykułu

Potato genetically modified by 14-3-3 protein repression in growing rat diets. Part II: Health status of experimental animals

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
For 4 weeks, male outbred IF2Jaz rats, divided into 4 groups (n=10), were administered ad libitum diets with 30% addition of dried tubers of transgenic potatoes with repression of isoform a, c as well as a and c of 14-3-3 protein (experimental groups) or with the addition of non-transgenic potatoes of Desiree cultivar (control group). The administration of transgenic potatoes did not affect the growth rate of model animals nor most of the analysed parameters of their health status. Neither anti-nutritional, nor immunostimulatory or toxic effects of the experimental diets were demonstrated. Yet, in liver tissue of rats fed a diet with transgenic potatoes J4 and G1 the concentration of 8-oxo-2’deoxyguanosine – a biomarker of oxidative damage to DNA – was higher than in animals administered a diet with non-transgenic potatoes. Results obtained in the study indicate a threat to the health status of animals fed diets with a high content of genetically-modified potatoes with repression of 14-3-3 protein.
Wydawca
-
Rocznik
Tom
58
Numer
3
Opis fizyczny
p.377-382,ref.
Twórcy
  • Warsaw University of Life Sciences, Ciszewskiego 8, 02-786 Warsaw, Poland
autor
autor
autor
Bibliografia
  • 1. Azevedo L., Gomes J., Stringheta P., Gontijo A., Padovani C., Ribeiro L., Salvadori D., Black bean (Phaseolus vulgaris L.) as a protective against DNA damage in mice. Food Chem. Toxicol., 2003, 41, 1671–1676.
  • 2. Catchpole G.S., Beckmann M., Enot D.P., Mondhe M., Zywicki B., Taylor J., Hardy N., Smith A, King R.D., Kell D., Fiehn O., Draper J., Hierarchical metabolomics demonstrates substantial compositional similarity between genetically modified and conventional potato crops. Proc. Natl. Acad. Sci. USA. 2005, 102, 14458–14462.
  • 3. Chen L., Bowen P.E., Berzy D., Aryee F., Stacewicz-Saountzakis M., Riley R.E., Diet modification affects DNA oxidative damage in healthy humans. Free Radical Biol. Med., 1999, 26, 695–701.
  • 4. EFSA, Guidance document of the scientific panel on Genetically Modified Organisms for the risk assessment of genetically modified plants and derived food and feed. EFSA Journal 2004. Updated on 7 December 2005, edited version of 28 April 2006, 99, 1–94
  • 5. Foksinski M., Kotzbach R., Szymanski W., Olinski R., The level of typical biomarker of oxidative stress 8-hydroxy-2-deoxyguanosine is higher in uterine myomas than in control tissues and correlates with the size of the tumor. Free Radic. Biol. Med., 2000, 29, 597–601.
  • 6. Frei B., Higdon J.V., Antioxidant activity of tea polyphenols in vivo: evidence from animal studies. J. Nutr., 2003, 133, 3275–3284.
  • 7. Kimber I., Dearman R.J., Animal models for the identification of protein allergenic potential: The BALB/c mouse. 2003, in: Workshop Overview: Approaches to the Assessment of the Al- lergenic Potential of Food from Genetically Modified Crops. (eds. Ladics G.S., Holsapple M. P., Astwood J.D., Kimber I., Knippels L.M.J., Helm R.M., Dong W.), Toxi. Sci., 2003, 73, 8–16.
  • 8. Kosieradzka I., Sawosz E., Szopa J. Vasko V., Potato genetically modified by 14-3-3 protein repression in growing rat diets. Part I: Chemical composition and digestibility of nutrients. Pol. J. Food Nutr. Sci., 2008, 58, 125–129.
  • 9. Matthews D., Jones H., Gans P., Coates S., Smith L.M., Toxic secondary metabolite production in genetically modified potatoes in response to stress. J. Agric. Food Chem., 2005, 53, 7766–7776.
  • 10. OECD, 2003. Considerations for the safety assessment of animal feedstuffs derived from genetically modified plants. [http://www.oecd.org/dataoecd/].
  • 11. Romański B., IgE-zależna alergia na pokarmy. Etiopatogeneza i obraz kliniczny. 1998, in: Choroby alergiczne (eds. Zawisza E., Smoliński B.). Wydawnictwo Lekarskie PZWL. Warszawa (in Polish).
  • 12. Shahjahan M., Vani G., Shyamaladevi C.S. Effect of Solanum trilobatum on the antioxidant status during diethyl nitrosamine induced and phenobarbital promoted hepatocarcinogenesis in rat. Chem.-Biol. Interact., 2005, 156, 113–123.
  • 13. Shigenaga M.K., Ames B.M., Assays for 8-hydroxy-2-deoxyguanosine: a biomarker of in vivo oxidative DNA damage. Free Rad. Biol. Med., 1991, 10, 211–216.
  • 14. Thorburn A., Death receptor-induced cell killing. Cellular Signalling, 2004, 16, 139–144.
  • 15. Valentova K., Ulrichova J., Cvak L., Simanek V., Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chem., 2007, 101, 912–917.
  • 16. Żuk M., Skała J., Biernat J., Szopa J., Repression of six 14-3-3 protein isoforms resulting in the activation of nitrate and carbon fixation key enzymes from transgenic potato plants. Plant Sci. 2003, 165, 731–741.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-72590ba5-31de-4428-a474-85f098ef1c39
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.