Warianty tytułu
Języki publikacji
Abstrakty
Photoreactive gangliosides of high specific radioactivity may prove useful for studies on glycosphingolipid functions. We prepared 4-azidosalicylic acid (ASA) acylated derivatives of GM3, GD3, GM1, and FucGM1 gangliosides (gangliosides-ASA). Gangliosides-ASA were characterized by their TLC mobility, UV spectra, carbohydrate composition, and digestion with leech endoceramidase. After radioiodination to about 200 Ci/mmole gangliosides-ASA were used for photochemical labeling of human erythrocytes. Radioiodinated gangliosides-ASA were incorporated into erythrocytes in a time and concentration dependent manner, the kinetics and extent of incorporation being similar for all the gangliosides-ASA used. Radioiodinated gangliosides-ASA incorporated into erythrocytes were resistant to trypsin digestion while treatment with 1% BSA removed about 90% of the label. Incubation with cholera toxin protected radioiodinated GM1-ASA and, to a lesser extent, FucGM1-ASA but not GM3-ASA and GD3-ASA, against removal with BSA. After photolysis about 40-50% of radioactivity was firmly bound to erythrocyte lipids and proteins. The ratio of lipid- to protein-bound radioactivity ranged from 2.2:1 to 3.2:1. Photolabeled proteins were analyzed by SDS/PAGE followed by autoradiography. Band 3 was the most extensively photolabeled protein with all the radioiodinated gangliosides-ASA used. DIDS, an inhibitor of band 3 protein activity, caused reduction in photolabeling of this protein by about 20%.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.509-521,fig.
Twórcy
autor
- Medical Center of Postgraduate Education, Marymoncka 99, 01-813 Warsaw, Poland
autor
Bibliografia
- 1. Wiegandt, H. (1985) Gangliosides; in New Comprehensive Biochemistry (Wiegandt, H. ed.) vol. 10, pp. 199-260, Elsevier, Amsterdam.
- 2. Stults, C.L.M., Sweeley, C.C. & Macher, B. (1989) Glycosphingoiipids: Structure, biological source, and properties. Methods Enzymol. 179, 167-214.
- 3. Hansson, H.A., Holmgren, H. & Svennerholm, L. (1977) Ultrastructural localization of cell membrane G^j ganglioside by cholera toxin. Proc. NatL Acad. ScL U.S.A. 74, 3782- 3786.
- 4. MilIer-Podra2a, H., Bradley, R.M. & Fishman, P.H. (1982) Biosynthesis and localization of gangliosides in cultured cells. Biochemistry 21, 3260-3265.
- 5. Gillard, B.K., Thurmon, L.T. & Marcus, D.M. (1993) Variable subcellular localization of glycosphingoiipids. Glycobiology 3, 57-67.
- 6. Wu, G., Lu, Z. & Ledeen, R.W. (1995) G^i ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neu- rite outgrowth. J. Neurochem. 65,1419-1422.
- 7. Saqr, H.E., Pearl, D.K. & Yates, A.J. (1993) A review and predictive models of ganglioside uptake by biological membranes. J. Neurochem. 61, 395-411.
- 8. Nagai, Y. (1995) Functional roles of gangliosides in bio-signalling. Behav. Brain. Res. 66, 99-104.
- 9. Hakomori, S. & Igarashi, Y. (1995) Functional role of glycosphingoiipids in cell recognition and signaling. J. Biochem. 118, 1091-1103.
- 10. Heitger, A. & Ladisch, S. (1996) Gangliosides block antigen presentation by human monocytes. Biochim. Biophys. Acta 1303,161-168.
- 11. Sonnino, S., Chigorno, V., Aquotti, D., Pitto, M., Kirschner, G. & Tettamanti, G. (1989) A photoreactive derivative of Gjjj ganglioside: Preparation and use to establish the involvement of specific proteins i^G^ uptake by human fibroblasts in culture. Biochemistry 28, 77-84.
- 12. Sonnino, S., Chigorno, V., Valsecchi, M. & Tettamanti, G. (1992) Specific ganglioside-cell protein interactions: A study performed with G^i ganglioside derivative containing pho- toactivable azide and rat cerebellar granule cells in culture. Neurochem. Int. 20,315-321.
- 13. Fra, A.M., Masserini, M., Palestini, P., Sonnino, S. & Simons, K. (1995) A photo-reactive derivative of ganglioside G\u specifically cross-links VIP21-caveolin on the cell surface. FEBSUtt. 375, 11-14.
- 14. Pacuszka, T. & Panasiewicz, M. (1995) Photochemical labeling of human erythrocyte membranes with radioiodinatable azidosalicylic acid derivative of globoside. Biochim. Biophys. Acta 1257, 265-273.
- 15. Svermerholm, L. & Fredman, P. (1980) A procedure for the quantitative isolation of brain gangliosides. Biochim. Riophyo. Acta 617, 97-109.
- 16. Pacuszka, T., Duffard, R.O., Nishimura, R.N., Brady, R.O. & Fishman, P.H. (1978) Biosynthesis of bovine thyroid gangliosides. J. Biol Chem. 253, 5839-5846.
- 17. Bartoszewicz, Z., Koscielak, J. & Pacuszka, T. (1986) Structure of a new disialoganglioside Gj)lc from spontaneous murine thymoma. Carbohydr. Res. 151, 77-88.
- 18. Schwarzman, G. & Sandhoff, K. (1987) Lyso- gangliosides:synthesis and use in preparing labeled gangliosides. Methods Enzymol. 138, 319-341.
- 19. Pinder, J.C., Smith, K.S., Pekrun, A. & Gratzer, W.B. (1989) Preparation and properties of human red-cell ankyrin. Biochem. J. 264, 423-428.
- 20. Rose, H.G. & Oklander, M. (1965) Improved procedure for the extraction of lipids from human erythrocytes. J. Lipid Res. 6, 428-431.
- 21. Dodge. J.T., Mitchell, C. & Hanahan, D.J. (1963) The preparation and characterization of hemoglobin free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100,119-130.
- 22. Laemmli, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227, 680-685.
- 23. Magnani, J.L., Smith, D.F. & Ginsburg, V. (1980) Detection of gangliosides that bind cholera toxin: Direct binding of 125I labeled toxin to thin layer chromatograms. Analyt. Biochem 109, 399-402.
- 24. Zhou, B., Li, S.-C., Laine, R., Huang, R.T.C. & Li, Y-T. (1989) Isolation and characterization of ceramide glycanase from the leech Macrob- delta decora. J. Biol. Chem. 264,12272-12277.
- 25. Hunter, W.M. & Greenwood, F.C. (1962) Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature (London) 194, 495-496.
- 26. Finkelstein, R.A. (1973) Cholera. CRC Crit Rev. Microbiol. 2, 553-623.
- 27. Eisingcr, J., Flores, J. & Salhany, J.M. (1982) Association of cytosol hemoglobin with the membrane intact erythrocytes. Proc. NatL AcadI ScL U.S.A. 79, 408-412.
- 28. Yang, H. & Hakomori, S. (1971) A sphin- golipid having a novel type of ceramide and lacto-N-fucopentose III. J. Biol. Chem. 246, 1192-1200.
- 29. Merkle, R.K. & Poppe, I. (1994) Carbohydrate compositional analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Method? Enzymol. 230, 1-15.
- 30. Dubois, M., Gilles, K.A., Hamilton, J.K., Re- bers, P.A. & Smith, F. (1956) Colorimetric method for determination of sugars and related substances. Analyt. Chem. 28,350-353.
- 31. Fishman, P.H. (1990) Mechanism of action of cholera toxin; in ADP-ńbosylating Toxins and G Proteins: Insights into Signal Transduction (Moss, J. & Vaughan, M., eds.) pp. 127-140, American Society for Microbiology, Washington.
- 32. Masserini, M., Freire, E., Palestini, P., Ca- lappi, E. & Tettamanti, G. (1992) Fuc-G^ mimics the receptor function of G^i for cholera toxin. Biochemistry 31, 2422-2426.
- 33. Nakamura, M., Ogino, H.. Nojiri, H., Kita- gawa, S. & Saito, M. (1989) Characteristic incorporation of ganglioside Gm3 which induces monocytic differentiation in human myelogenous leukemia HL-60 cells. Biochem. Biophys. Res. Commun. 161, 782-789.
- 34. Berkhout, T.A., Van Amerongen, A. & Wirtz, K.W.A. (1984) Labeling of phospholipids in vesicles and human erythrocytes by photoacti- vable fatty acid derivatives. Eur. J. Biochem. 142, 91-97.
- 35. Fairbanks, G., Steck, Th. & Wallach, D.F.H. (1971) Electrophoretic analysis of the major peptides of the human erythrocyte membrane. Biochemistry 10. 2606-2617.
- 36. Reithmeier, R.A.F. (1993) The erythrocyte anion transporter (band 3). Curr. Opin. Struct Biol 3, 515-523.
- 37. Hanicak, A., Maretzki, D., Reimann, B., Pap, E., Visser, A.J.G., Wirtz, K.W.A. & Schubert, D. (1994) Erythrocyte band 3 protein strongly interacts with phosphoinositides. FEBS Lett. 348, 169-172.
- 38 Vondenhof, A., Oslender, A., Deuticke, B. & Haest, C.W.M. (1994) Band 3, an accidental flippase for anionic phospholipids? Biochemistry 33,4517-4520.
- 39.Serra, M.V., Kamp, D. & Haest, W.M. (1996) Pathways for flip-flop of mono- and di-anionic phospholipids in the erythrocyte membrane. Biochim. Biophys. Acta 1282, 263-273.
- 40. Cabantchik, Z.I. & Greger, R. (1992) Chemical probes for anion transporters of mammalian cell membranes. Am. J. Physiol 262, C805- C827.
- 41. Brunner, J. (1989) Photochemical labeling of apolar phase of membranes. Methods EnzymoL 172, 628-687.
- 42.Schopfer, L.M. & Salhany, J.M. (1995) Characterization of the stilbenedisulfonate binding site on band 3. Biochemistry 34, 8320-8329.
- 43. Rodgers, W. & Glaser, M. (1993) Distribution of proteins and lipids in the erythrocyte membrane. Biochemistry 32, 12591-12598.
- 44. Peters, L.L., Shivdasani, R.A., Liu, S.-C., Hanspal, M., John, K.M., Gonzalez, J.M., Brugnara, C., Gwynn, B., Mohandas, N., Alper, S.L., Orkin, S. & Lux. S.E. (1996) Anion exchanger 1 (band 3) is required to prevent erythrocyte membrane surface loss but not to form the membrane cytoskeleton. Cell 86, 917-927.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-6f903025-30f7-4642-a3d9-7e363d5d79c3