Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | 56 | 3 | 379-389
Tytuł artykułu

Day-to-night activity of bacteria in the surface microlayer eutrophic lake

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study examined changes of bacteria numbers in the surface microlayer (SM) and subsurface water (SW) of a lake during a day- and night-time. The research also addresses the synthesis of DNA and cell protein as well as the activity of cellular dehydrogenases depending on time of the day. Results demonstrated that in spring and summer the numbers of bacteria (per cm3 ) in the SM was significantly greater during night-time than day-time (average: May, daytime – 30.058 × 10⁶, night-time – 71.343 × 10⁶; July, day-time – 10.801 × 10⁶, night-time – 40.353 × 10⁶). In October, numbers of bacteria in dayand night-time were not statistically different (respectively: 5.841 × 10⁶ and 3.664 × 10⁶). Results indicated also that the rate of DNA synthesis by SM bacteria was much higher in the night-time (average: May – 2.049 × 10⁻⁶ pg h⁻¹ cell⁻¹; July – 1.363 × 10⁻⁶ pg h⁻¹ cell⁻¹), than in the day-time (average: May – 0.7263 × 10⁻⁶ pg h⁻¹ cell⁻¹; July – 0.3404 ×10⁻⁶ pg h⁻¹ cell⁻¹). In contrast, in October the values of DNA synthesis by SM bacteria were higher in night-time. These changes are significantly smaller in SW at a depth of several dozen centimetres. However, no significant impact was observed of a time of the day on the activity of protein synthesis and activity of cellular dehydrogenases by bacteria inhabiting SM and SW.
Wydawca
-
Rocznik
Tom
56
Numer
3
Strony
379-389
Opis fizyczny
p.379-389,fig.,ref.
Twórcy
autor
  • Nicolaus Copernicus University, Gagarina 9, 87-100 Torun, Poland
Bibliografia
  • Boavida M.J., Wetzel R.G. 1998 – Inhibition of phosphatase activity by dissolved humic substances and hydrolytic reactivation by natural ultraviolet light – Freshwater Biology, 40: 285–293.
  • Chróst R.J., Faust M.A. 1999 – Consequences of solar radiation on bacterial secondary production and growth rates in subtropical coastal water (Atlantic Coral Reef off Belize, Central America) – Aquatic Microbiol. Ecol. 20: 39–48.
  • Chróst R.J., Overback J., Wcisło R. 1998 – Evaluation of the [³H] Thymidine method for estimatingbacterial growth rates and production in lake water: Re-examination and methodological comments – Acta Microbiol. Pol. – 1: 95–112.
  • Cockell C.S. 2000 – Ultraviolet radiation and the photobiology of earth’s early oceans – Origins of Life and Evol. of the Biosph. 30: 467–499.
  • Dahlbäck B. 1983 – Microbial accumulation of interfaces. Marine micro – organisms and interfaces – Univ. of Göteborg. 3: 12–15.
  • Davidson A.T. 1998 – The impact of UVB radiation on marine plankton – Mutation Res. 422: 119–129.
  • Denwart C.M.T., Edling H., Tranvik L.J. 1999 – Effects of solar radiation on bacterial and fungal density on aquatic plant detritus – Freshwater Biology, 41: 575–582.
  • Falkowska L. 2001 – 12-hour cycle of matter transformation in the sea surface microlayer in the offshore waters of Gdańsk Basin (Baltic Sea) during spring – Oceanologia, 43: 201–222.
  • Garabetian F. 1991 – ¹⁴C-glucose ptake and ¹⁴C-CO₂ production in surface microlayer and surface-water samples: influence of UV and visible radiation – Mar. Ecol. Prog. Ser. 77: 21–26.
  • Garrett W.P. 1965 – Collection of slick-forming materials from the sea surface – Limnol. Oceanogr. 10: 602–605.
  • Häder D.P., Kumar H.D., Smith R.C., Worrest R.C. 1998 – Effects on aquatic ecosystems – J. Photochem. Photobiol. 46: 53–68.
  • Hessen D.O., Gjessing E.T., Knulst J., Fjeld E. 1997 – TOC fluctuations in humic lake as related to catchment acidification, season and climate – Biogeochemistry 36: 139–151.
  • Hermansson M., Dahlbäck B. 1983 – Bacterial activity at the air/water interface – Microbiol. Ecol. 9: 317–328.
  • Herndl G.J., Brugger A., Hager S., Kaiser E., Obernosterer I., Reitner B., Slezak D. 1997 – Role of utraviolet-B radiation on bacterioplankton and availability of dissolved organic matter – Vegetatio, 128: 43–51.
  • Herndl G.J., Muller-Niklas G., Frick J. 1993 – Major role of ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean – Nature, 361: 717–719.
  • Hillbricht-Ilkowska A., Kostrzewska-Szlakowska I. 2004 – Surface microlayer in lakes of different trophic status: nutrients concentration and accumulation – Pol. J. Ecol. 52: 461–478.
  • Hoppe H. 1986 – Degradation in sea water – Biotechnol. 8: 453–474.
  • Joint R., Morris R. 1982 – The role of bacteria in the turnover of organic matter in the sea – Oceanogr. Mar. Biol. Ann. Rev. 20: 65–118.
  • Jorgensen N.O.G., Tranvik L., Edling H., Graneli W., Lidell M. 1998 – Effects of sunlight on occurrence and bacterial turnover of specific carbon and nitrogen compounds in lake water – FEMS Microbiology Ecol. 25: 217–227.
  • Kaiser E., Herndl G.J. 1997 – Rapid recovery of marine bacterioplankton activity after inhibition by UV radiation in coastal waters – Appl. Environ. Microbiol. 10: 4026–4031.
  • Kirchman D.L., K’nees E., Hodson R.E. 1985 – Leucine incorporation and its potential as a mesure of protein synthesis by bacteria in natural aquatic systems – Appl. Environ. Microbiol. 3: 599–607.
  • Kirchman D.L., Newell S.Y., Hodson R.E. 1989 – Incorporation versus biosynthesis of leucine: implications for measuring rates of protein synthesis and biomass production by bacteria in marine systems – Mar. Ecol. Prog. Ser. 32: 47–57.
  • Korzeniewski K. 1995 – Background of chemical oceanography – Wydawnictwo Uniwersytetu Gdańskiego. (In Polish).
  • Kostrzewska-Szlakowska I. 2000 – Air-water interface in lakes: relations to in-lake trophism – Verh. Internat. Verein. Limnol. 27: 1871–1874.
  • Kostrzewska-Szlakowska I. 2003 – A surface microlayer of waters: characteristics and research methods – Wiad. ekol. 49: 183–202 (In Polish).
  • Plasquellec A., Beucher H., Le Lay C., Cleret J. 1991 – Quantitative and qualitative bacteriology of the marine water surface microlayer in a sewage – polluted area – Mar. Environ. Res. 31: 227–239.
  • Shilo M. [Ed.] 1979 – Introduction. Strategies of Microbial Life in Extreme Environments – Shilo M. Verlag Chemie, Berlin, pp. 11–13.
  • Skórczewski P., Mudryk Z. 2003 – Dynamics of daily changes to the number and production of estuarine bacterioneuston and bacterioplankton – AUMC, Limnological Papers, 13: 55–63.
  • Vestal J.R., Hobbie J.E. 1988 – Microbial adaptations to extreme environmets. (in:) Microorganisms in Action:Concepts and Applications in Microbial Ecology – Blackwell Scientific Publications, Oxford, 193–206.
  • Williams P.M., Carlucci A.F., Henrichs S.M., Van Vleet E.S., Horrigan S.G., Reid F.M.H., Robertson K.J. 1986 – Chemical and microbiological studies of sea-surface films in the southern Gulf of California and off the west coast of Baja California – Mar.Chem. 19: 17–98.
  • Zaitsev Y.P. 1971 – Marine Neustonology – Israel Prog. Scientific Tranl. Jerusalem.
  • Zębek E. 2005 – Qualitative and quantitative changes of Blue-Green Algae in response to physicochemical water parameters in the urban lake Jeziorak Mały – Oceanol. Hydrobiol. Studies, 39: 39–56.
  • Zimmermann R. 1977 – Estimation of bacterial number and biomass by epifluorescence microscopy and scanning electron microscopy (In: Microbiol. Ecol. of Brackish Water Environ. Ed. G. Rheinheimer) – Springer-Verlag, New York. pp. 103.
  • Zimmermann R., Iturriaga R., Becker-Birck J. 1978 – Simultaneous determination of the total number of aquatic bacteria and the number thereof involved in respiration – Appl. Environ. Microbiol. 12: 926–935.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-66e0d005-a486-4db2-a2e3-557a6a88d696
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.