Warianty tytułu
Języki publikacji
Abstrakty
Cell death is an essential event in normal life and development, as well as in the pathophysiological processes that lead to disease. It has become clear that each of the main cellular organelles can participate in cell death signalling pathways, and recent advances have highlighted the importance of the endoplasmic reticulum (ER) in cell death processes. In cells, the ER functions as the organelle where proteins mature, and as such, is very responsive to extracellular-intracellular changes of environment. This short overview focuses on the known pathways of programmed cell death triggering from or involving the ER.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.488-505,fig.,ref.
Twórcy
autor
- Masaryk Memorial Cancer Institute, Zluty Kopec 7, 656 53 Brno, Czech Republic
autor
autor
autor
Bibliografia
- 1. Kaufman, R.J. Stress signalling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 13 (1999) 1211-1233.
- 2. Pahl, H.L. Signal transduction from the endoplasmic reticulum to the cell nucleus. Physiol. Rev. 79 (1999) 683-701.
- 3. Ma, Y. and Hendershot, L.M. The role of the unfolded protein response in tumour development: friend or foe? Nat. Rev. Cancer 4 (2004) 966-977.
- 4. Lemasters, J.J. Dying a thousand deaths: redundant pathways from different organelles to apoptosis and necrosis. Gastroenterology 129 (2005) 351-360.
- 5. Breckenridge, D.G., Germain, M., Mathai, J.P., Nguyen, M. and Shore, G.C. Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22 (2003) 8608-8618.
- 6. Scheuner, D., Song, B., McEwen, E., Liu, C., Laybutt, R., Gillespie, P., Saunders, T., Bonner-Weir, S. and Kaufman, R.J. Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol. Cell. 7 (2001) 1165-1176.
- 7. Iwakoshi, N.N., Lee, A.H., Vallabhajosyula, P., Otipoby, K.L., Rajewsky, K. and Glimcher, L.H. Plasma cell differentiation and the unfolded protein response intersect at the transcription factor XBP-1. Nat. Immunol. 4 (2003) 321-329.
- 8. Gass, J.N., Gifford, N.M. and Brewer, J.W. Activation of an unfolded protein response during differentiation of antibody-secreting B cells. J. Biol. Chem. 277 (2002) 49047-49054.
- 9. Reimold, A.M., Etkin, A., Clauss, I., Perkins, A., Friend, D.S., Zhang, J., Horton, H.F., Scott, A., Orkin, S.H., Byrne, M.C., Grusby, M.J. and Glimcher, L.H. An essential role in liver development for transcription factor XBP-1. Genes Dev. 14 (2000) 152-157.
- 10. Freiden, P.J., Gaut, J.R. and Hendershot, L.M. Interconversion of three differentially modified and assembled forms of BiP. EMBO J. 11 (1992) 63-70.
- 11. Blond-Elguindi, S., Fourie, A.M., Sambrook, J.F. and Gething, M.J. Peptidedependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J. Biol. Chem. 268 (1993) 12730-12735.
- 12. Tirasophon, W., Welihinda, A.A. and Kaufman, R.J. A stress response pathway from the endoplasmic reticulum to the nucleus requires a novel bifunctional protein kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev. 12 (1998) 1812-1824.
- 13. Wang, X.Z., Harding, H.P., Zhang, Y., Jolicoeur, E.M., Kuroda, M. and Ron, D. Cloning of mammalian Ire1 reveals diversity in the ER stress responses. EMBO J. 17 (1998) 5708-5717.
- 14. Ma, Y. and Hendershot, L.M. The unfolding tale of the unfolded protein response. Cell 107 (2001) 827-830
- 15. Shen, X., Ellis, R.E., Lee, K., Liu, C.Y., Yang, K., Solomon, A., Yoshida, H., Morimoto, R., Kurnit, D.M., Mori, K. and Kaufman, R.J. Complementary signaling pathways regulate the unfolded protein response and are required for C. elegans development. Cell 107 (2001) 893-903.
- 16. Lee, K., Tirasophon, W., Shen, X., Michalak, M., Prywes, R., Okada, T., Yoshida, H., Mori, K. and Kaufman, R.J. IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev. 16 (2002) 452-466.
- 17. Harding, H.P., Zhang, Y. and Ron, D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature 397 (1999) 271-274.
- 18. Shi, Y., Vattem, K.M., Sood, R., An, J., Liang, J., Stramm, L. and Wek, R.C. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol. Cell. Biol. 18 (1998) 7499-74509.
- 19. Jiang, H.Y. and Wek, R.C. Phosphorylation of the alpha-subunit of the eukaryotic initiation factor-2 (eIF2alpha) reduces protein synthesis and enhances apoptosis in response to proteasome inhibition. J. Biol. Chem. 280 (2005) 14189-14202.
- 20. Ye, J., Rawson, R.B., Komuro, R., Chen, X., Dave, U.P., Prywes, R., Brown, M.S. and Goldstein, J.L. ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol. Cell. 6 (2000) 1355-1364.
- 21. Yoshida, H., Matsui, T., Yamamoto, A., Okada, T. and Mori, K. XBP1 mRNA is induced by ATF6 and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. Cell 107 (2001) 881-891.
- 22. Calfon, M., Zeng, H., Urano, F., Till, J.H., Hubbard, S.R., Harding, H.P., Clark, S.G. and Ron, D. IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415 (2002) 92-96.
- 23. Fornace, A.J. Jr., Alamo, I. Jr. and Hollander, M.C. DNA damage-inducible transcripts in mammalian cells. Proc. Natl. Acad. Sci. USA 85 (1988) 8800- 8804.
- 24. Ron, D. and Habener, J.F. CHOP, a novel developmentally regulated nuclear protein that dimerizes with transcription factors C/EBP and LAP and functions as a dominant-negative inhibitor of gene transcription. Genes Dev. 6 (1992) 439-453.
- 25. Barone, M.V., Crozat, A., Tabaee, A., Philipson, L. and Ron, D. CHOP (GADD153) and its oncogenic variant, TLS-CHOP, have opposing effects on the induction of G1/S arrest. Genes Dev. 8 (1994) 453-464.
- 26. Zhan, Q., Lord, K.A., Alamo, I. Jr., Hollander, M.C., Carrier, F., Ron, D., Kohn, K.W., Hoffman, B., Liebermann, D.A. and Fornace, A.J. Jr. The gadd and MyD genes define a novel set of mammalian genes encoding acidic proteins that synergistically suppress cell growth. Mol. Cell. Biol. 14 (1994) 2361-2371.
- 27. Harding, H.P., Novoa, I., Zhang, Y., Zeng, H., Wek, R., Schapira, M. and Ron, D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol. Cell. 6 (2000) 1099-108.
- 28. Okada, T., Yoshida, H., Akazawa, R., Negishi, M. and Mori, K. Distinct roles of activating transcription factor 6 (ATF6) and double-stranded RNAactivated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response. Biochem. J. 366 (2002) 585-594.
- 29. Wang, X.Z. and Ron, D. Stress-induced phosphorylation and activation of the transcription factor CHOP (GADD153) by p38 MAP Kinase. Science 272 (1996) 1347-1349.
- 30. Oyadomari, S. and Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 11 (2004) 381-389.
- 31. Wang, X.Z., Lawson, B., Brewer, J.W., Zinszner, H., Sanjay, A., Mi, L.J., Boorstein, R., Kreibich, G., Hendershot, L.M. and Ron, D. Signals from the stressed endoplasmic reticulum induce C/EBP-homologous protein (CHOP/GADD153). Mol. Cell. Biol. 16 (1996) 4273-4280.
- 32. Prostko, C.R., Brostrom, M.A., Malara, E.M. and Brostrom, C.O. Phosphorylation of eukaryotic initiation factor (eIF) 2 alpha and inhibition of eIF-2B in GH3 pituitary cells by perturbants of early protein processing that induce GRP78. J. Biol. Chem. 267 (1992) 16751-16754.
- 33. Samuel, C.E., Kuhen, K.L., George, C.X., Ortega, L.G., Rende-Fournier, R. and Tanaka, H. The PKR protein kinase-an interferon-inducible regulator of cell growth and differentiation. Int. J. Hematol. 65 (1997) 227-237.
- 34. St Johnston, D., Brown, N.H., Gall, J.G. and Jantsch, M. A conserved double-stranded RNA-binding domain. Proc. Natl. Acad. Sci. USA 89 (1992) 10979-10983.
- 35. Zinn, K., Keller, A., Whittemore, L.A. and Maniatis, T. 2-Aminopurine selectively inhibits the induction of beta-interferon, c-fos, and c-myc gene expression. Science 240 (1988) 210-213.
- 36. Kumar, A., Haque, J., Lacoste, J., Hiscott, J. and Williams, B.R. Doublestranded RNA-dependent protein kinase activates transcription factor NFkappa B by phosphorylating I kappa B. Proc. Natl. Acad. Sci. USA 91 (1994) 6288-6292.
- 37. Jimenez-Garcia, L.F., Green, S.R., Mathews, M.B. and Spector, D.L. Organization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNAI in adenovirus-2-infected HeLa cells. J. Cell Sci. 106 (1993) 11-22.
- 38. Jeffrey, I.W., Kadereit, S., Meurs, E.F., Metzger, T., Bachmann, M., Schwemmle, M., Hovanessian, A.G. and Clemens, M.J. Nuclear localization of the interferon-inducible protein kinase PKR in human cells and transfected mouse cells. Exp. Cell Res. 218 (1995) 17-27.
- 39. Wu, S., Kumar, K.U. and Kaufman, R.J. Identification and requirement of three ribosome binding domains in dsRNA-dependent protein kinase (PKR). Biochemistry 37 (1998) 13816-13826.
- 40. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan, J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403 (2000) 98-103.
- 41. Fischer, H., Koenig, U., Eckhart, L. and Tschachler, E. Human caspase 12 has acquired deleterious mutations. Biochem. Biophys. Res. Commun. 293 (2002) 722-726.
- 42. Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y. and Tohyama, M. Involvement of caspase-4 in endoplasmic reticulum stressinduced apoptosis and Abeta-induced cell death. J. Cell Biol. 165 (2004) 347-356.
- 43. Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P. and Ron, D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287 (2000) 664-666.
- 44. Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T. and Tohyama, M. Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2- dependent mechanism in response to the ER stress. J. Biol. Chem. 276 (2001) 3935-3940.
- 45. Rao, R.V., Castro-Obregon, S., Frankowski, H., Schuler, M., Stoka, V., del Rio, G., Bredesen, D.E. and Ellerby, H.M. Coupling endoplasmic reticulum stress to the cell death program. An Apaf-1-independent intrinsic pathway. J. Biol. Chem. 277 (2002) 21836-21842.
- 46. Morishima, N., Nakanishi, K., Takenouchi, H., Shibata, T. and Yasuhiko, Y. An endoplasmic reticulum stress-specific caspase cascade in apoptosis. Cytochrome c-independent activation of caspase-9 by caspase-12. J. Biol. Chem. 277 (2002) 34287-34294.
- 47. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B.A. and Yuan J. Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403 (2000) 98-103.
- 48. Di Sano, F., Ferraro, E., Tufi, R., Achsel, T., Piacentini, M. and Cecconi, F. Endoplasmic reticulum stress induces apoptosis by an apoptosomedependent but caspase 12-independent mechanism. J. Biol. Chem. 281 (2006) 2693-2700.
- 49. Saleh, M., Mathison, J.C., Wolinski, M.K., Bensinger, S.J., Fitzgerald, P., Droin, N., Ulevitch, R.J., Green, D.R. and Nicholson, D.W. Enhanced bacterial clearance and sepsis resistance in caspase-12-deficient mice. Nature 440 (2006) 1064-1068.
- 50. Saleh, M., Vaillancourt, J.P., Graham, R.K., Huyck, M., Srinivasula, S.M., Alnemri, E.S., Steinberg, M.H., Nolan, V., Baldwin, C.T., Hotchkiss, R.S., Buchman, T.G., Zehnbauer, B.A., Hayden, M.R., Farrer, L.A., Roy, S. and Nicholson, D.W. Differential modulation of endotoxin responsiveness by human caspase-12 polymorphisms. Nature 6 (2004) 75-79.
- 51. Pahl, H.L. and Baeuerle, P.A. A novel signal transduction pathway from the endoplasmic reticulum to the nucleus is mediated by transcription factor NFkappa B. EMBO J. 14 (1995) 2580-2588.
- 52. Pahl, H.L., Sester, M., Burgert, H.G. and Baeuerle, P.A. Activation of transcription factor NF-kappaB by the adenovirus E3/19K protein requires its ER retention. J. Cell Biol. 132 (1996) 511-522.
- 53. Hacki, J., Egger, L., Monney, L., Conus, S., Rosse, T., Fellay, I. and Borner, C. Apoptotic crosstalk between the endoplasmic reticulum and mitochondria controlled by Bcl-2. Oncogene 19 (2000) 2286-2295.
- 54. Boya, P., Cohen, I., Zamzami, N., Vieira, H.L. and Kroemer, G. Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ. 9 (2002) 465-467.
- 55. McCormick, T.S., McColl, K.S. and Distelhorst, C.W. Mouse lymphoma cells destined to undergo apoptosis in response to thapsigargin treatment fail to generate a calcium-mediated grp78/grp94 stress response. J. Biol. Chem. 272 (1997) 6087-6092.
- 56. McCullough, K.D., Martindale, J.L., Klotz, L.O., Aw, T.Y. and Holbrook, N.J. Gadd153 sensitizes cells to endoplasmic reticulum stress by downregulating Bcl2 and perturbing the cellular redox state. Mol. Cell. Biol. 21 (2001) 1249-1259.
- 57. Wei, M.C., Zong, W.X., Cheng, E.H., Lindsten, T., Panoutsakopoulou, V., Ross, A.J., Roth, K.A., MacGregor, G.R., Thompson, C.B. and Korsmeyer, S.J. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292 (2001) 727-730.
- 58. Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A. and Pozzan, T. Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280 (1998) 1763-1766.
- 59. Hsu, Y.T., Wolter, K.G. and Youle, R.J. Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc. Natl. Acad. Sci. USA 94 (1997) 3668-3672.
- 60. Lindsten, T., Ross A.J., King, A., Zong, W.X., Rathmell, J.C., Shiels, H.A., Ulrich, E., Waymire, K.G., Mahar, P., Frauwirth, K., Chen, Y., Wei, M., Eng, V.M., Adelman, D.M., Simon, M.C., Ma, A., Golden, J.A., Evan, G., Korsmeyer, S.J., MacGregor, G.R. and Thompson, C.B. The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol. Cell. 6 (2000) 1389-1399.
- 61. Zong, W.X., Lindsten, T., Ross, A.J., MacGregor, G.R. and Thompson, C.B. BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev. 15 (2001) 1481-1486.
- 62. Pinton, P., Ferrari, D., Magalhaes, P., Schulze-Osthoff, K., Di Virgilio, F., Pozzan, T. and Rizzuto, R. Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J. Cell Biol. 148 (2000) 857-862.
- 63. Foyouzi-Youssefi, R., Arnaudeau, S., Borner, C., Kelley, W.L., Tschopp, J., Lew, D.P., Demaurex, N. and Krause, K.H. Bcl-2 decreases the free Ca2+ concentration within the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 97 (2000) 5723-5728.
- 64. Chami, M., Prandini, A., Campanella, M., Pinton, P., Szabadkai, G., Reed, J.C. and Rizzuto, R. Bcl-2 and Bax exert opposing effects on Ca2+ signaling, which do not depend on their putative pore-forming region. J. Biol. Chem. 279 (2004) 54581-54589.
- 65. Li, H., Zhu, H., Xu, C.J. and Yuan, J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94 (1998) 491-501.
- 66. Luo, X., Budihardjo, I., Zou, H., Slaughter, C. and Wang, X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94 (1998) 481- 490.
- 67. Puthalakath, H. and Strasser, A. Keeping killers on a tight leash: transcriptional and post-translational control of the pro-apoptotic activity of BH3-only proteins. Cell Death Differ. 9 (2002) 505-512.
- 68. Letai, A., Bassik, M.C., Walensky, L.D., Sorcinelli, M.D., Weiler, S. and Korsmeyer, S.J. Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell. 2 (2002) 183-192.
- 69. Germain, M., Mathai, J.P. and Shore, G.C. BH-3-only BIK functions at the endoplasmic reticulum to stimulate cytochrome c release from mitochondria. J. Biol. Chem. 277 (2002) 18053-18060.
- 70. Ito, Y., Pandey, P., Mishra, N., Kumar, S., Narula, N., Kharbanda, S., Saxena, S. and Kufe, D. Targeting of the c-Abl tyrosine kinase to mitochondria in endoplasmic reticulum stress-induced apoptosis. Mol. Cell. Biol. 21 (2001) 6233-6242.
- 71. Ng, F.W., Nguyen, M., Kwan, T., Branton, P.E., Nicholson, D.W., Cromlish, J.A. and Shore, G.C. p28 Bap31, a Bcl-2/Bcl-XL- and procaspase-8-associated protein in the endoplasmic reticulum. J. Cell. Biol. 139 (1997) 327-338.
- 72. Breckenridge, D.G., Nguyen, M., Kuppig, S., Reth, M. and Shore, G.C. The procaspase-8 isoform, procaspase-8L, recruited to the BAP31 complex at the endoplasmic reticulum. Proc. Natl. Acad. Sci. USA 99 (2002) 4331-4336.
- 73. Nguyen, M., Breckenridge, D.G., Ducret, A. and Shore, G.C. Caspaseresistant BAP31 inhibits fas-mediated apoptotic membrane fragmentation and release of cytochrome c from mitochondria. Mol. Cell. Biol. 20 (2000) 6731-6740.
- 74. Wang, X., Zelenski, N.G., Yang, J., Sakai, J., Brown, M.S. and Goldstein J.L. Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis. EMBO J. 15 (1996) 1012-1020.
- 75. Keenan, R.J., Freymann, D.M., Stroud, R.M. and Walter, P. The signal recognition particle. Annu. Rev. Biochem. 70 (2001) 755-775.
- 76. Utz, P.J., Hottelet, M., Le, T.M., Kim, S.J., Geiger, M.E., van Venrooij, W.J. and Anderson P. The 72-kDa component of signal recognition particle is cleaved during apoptosis. J. Biol. Chem. 273 (1998) 35362-35370.
- 77. Hirota, J., Furuichi, T. and Mikoshiba, K. Inositol 1,4,5-trisphosphate receptor type 1 is a substrate for caspase-3 and is cleaved during apoptosis in a caspase-3-dependent manner. J. Biol. Chem. 274 (1999) 34433-34437.
- 78. Reddy, R.K., Lu, J. and Lee, A.S. The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca (2+)-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. J. Biol. Chem. 274 (1999) 28476-28483.
- 79. Wellington, C.L. and Hayden, M.R. Caspases and neurodegeneration: on the cutting edge of new therapeutic approaches. Clin. Genet. 57 (2000) 1-10.
- 80. Qu, L., Huang, S., Baltzis, D., Rivas-Estilla, A.M., Pluquet, O., Hatzoglou, M., Koumenis, C., Taya, Y., Yoshimura, A. and Koromilas, A.E. Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3 beta. Genes Dev. 18 (2004) 261-277.
- 81. Waterman, M.J., Stavridi, E.S., Waterman, J.L. and Halazonetis, T.D. ATMdependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet. 19 (1998) 175-178.
- 82. Stavridi, E.S., Chehab, N.H., Malikzay, A. and Halazonetis, T.D. Substitutions that compromise the ionizing radiation-induced association of p53 with 14-3-3 proteins also compromise the ability of p53 to induce cell cycle arrest. Cancer Res. 61 (2001) 7030-7033.
- 83. Bourdon, J.C., Deguin-Chambon, V., Lelong, J.C., Dessen, P., May, P., Debuire, B. and May, E. Further characterisation of the p53 responsive element identification of new candidate genes for trans-activation by p53. Oncogene 14 (1997) 85-94.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-66c692aa-d91f-4198-aa52-ee82797504ed