Warianty tytułu
Języki publikacji
Abstrakty
This short review assembles the contributions of the author's laboratory to the structural aspects of DNA. DNA was modified by small ligands and/or substituents. There are three aspects to this work: a) Protonation of guanosine and DNA and the formation of triple- and quadruple-strands of guanosine, its nucleotides, their polymers and DNA. b) Substitution of the 2'-position of deoxyribose by the most polar atom, fluorine: studies on 2'-deoxy-2'-fluoro-nucleosides, -nucleotides and their polymers, studied both by structural and biological methods. c) The effect of introducing the methyl group in the large groove of DNA: NMR studies of oligonucleotides containing N6-methylated adenine residues, and enzymatic and molecular biology work on Dam methylase are reported.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Opis fizyczny
p.77-94,fig.
Twórcy
autor
- Service de Biochimie et Genetique Moleculaire, Bat.142, F-91191 Gif-sur-Yvette Cedex, France
Bibliografia
- 1. Watson, J.D. & Crick, F.H.C. (1953) Molecular structure of nucleic acids. Nature CLondon) 171, 346-348.
- 2. Watson, J.D. & Crick, F.H.C. (1953) Genetical implications of the structure of deoxyribonucleic acid. Nature (London) 171, 964-967.
- 3. Spengler, S. & Singer, B. (1981) Effect of tautomeric shift on mutation: N4-methoxy- cvtidine forms hydrogen bonds with adenosine in polymers. Biochemistry 20. 7290 7294.
- 4. a) Wolfe nden, R.V. (1969) Tautomeric equilibria in inosine and adenosine, J. Mol. Biol. 40, 307-310; b) Psoda, A. & Shugar, D. (1971) Spectral studies on tautomeric forms of inosine. Biochim. Biopltys. Acta 247, 507-513.
- 5. Kierdaszuk, B., Stolarski, R. & Shugar, D. (1983) Hydroxylamine mutagenesis: observation of inverted Watson-Crick base pairing between N4-methoxycytosine and adenine with the aid of natural-abundance high resolution l5N-NMR spectroscopy. Eur. J. Biochem. 130, 559-564.
- 6. Kierdaszuk, B. & Shugar, D. (1983) Structure of the planar complex of N4-methoxvcytosine with adenine and its relevance to the mechanism of hydroxylamine mutagenesis. Biophys. Chen. 17,285-295.
- 7. Fazakerley, G.V., Gdaniec, Z. & Sowers, L.C. (1993) Base-pair induced shifts in the tautomeric equilibrium of a modified base pair. /. Mol. Biol. 230,6-10.
- 8. Hoogsteen, K. (1959) The structure of crystals containing a hvdrogen-bonded complex of 1-methylthymine and 9-methyladenine. Acta Cryst. 12, 822-823; (1963) The crystal and molecular structure of a hvdrogen-bonded complex between 1-methylthymine and 9-methvladenine. Acta Cryst. 16.907-916.
- 9. Haschemeyer, A.K.V. & Sobell, H.M. (1965) The crystal structure ot'a hydrogen bonded complex of deoxyadenosine and 5-bromodeoxyuridine. Acta Cryst. 18, 525-532.
- 10. Voet, D. & Rich, A. (1970) The crystal structures of purines, pyrimidines and their inter- molecular complexes. Progr. Nucleic Acids Res. Mol. Biol. 10,183-265.
- 11. Sobell, H.M. (1972) Hydrogen-bonding studies of base pairing in solution and in the crystalline state. Jerusalem Symp. Quant. Chem. Biochem. 4, 124-148.
- 12. Haschemeyer, A.E.V. & Sobell, H.M. (1965) The crystal structure of a hydrogen bonded complex of deoxyguanosine and 5-bromodeoxycytidine. Acta Cryst. 19, 125-130.
- 13. Haschemeyer, A.F..V. & Rich, A. (1967) Nucleoside conformations: an analysis of steric barriers to rotation about the glvcosidic bond. /. Mol. Biol. 27, 369-385.
- 14. Felsenfeld, G.L., Davies, D.R. & Rich, A. (1957) Formation of a three-stranded polynucleotide molecule. /. Am. Chem. Soc. 79, 2023-2025.
- 15. Massoulte, J. (1968) Thermodynamique des associations entre poly A et poly U en milieu neutre et alcalin. Eur. f. Biochem. 3,428-438.
- 16. Blake, R.D., Massoulie, J. & Fresco. J.R. (1967) Polynucleotides. 8. A spectral approach to the equilibria between polvadenylate and polyuridyiate and their complexes. J. Mol. Biol. 30, 291-308.
- 17. Porschke, D. (1971) Cooperative non-enzvmic base recognition. II. Itiermodynamics of the helix-coil transition of oligoadenylic + oligouridylic acids. Biopolymers 10, 1989-2013.
- 18. Michelson, A.M., Massoulte, J. & Guschlbauer. W. (1967) Synthetic polynucleotides. Progr. Nucleic Acids Res. Mol. Biol. 6,83-141.
- 19. Felsenfeld, G.L. & Miles. H.T. (1967) The physical and chemical properties of nucleic acids. Amu. Rev. Biochem. 36,407-448.
- 20. Guschlbauer, W. & Courtois, Y. (1968) pH Induced changes in optical activity of guanine nucleosides. FEBS Lett. 1,183-186.
- 21. Guschlbauer, W. (1972) Why is guanosine different? Jerusalem Symp. Quant. Chem. Biochem. 4, 297-310.
- 22. Tran-Dinh, S., Guschlbauer, W. & C.ueron, M. (1972) Flexibility and conformations of guanosine monophosphates by the Overhauser effect. J. Am. Chem. Soc. 94, 7903-7911.
- 23. Chantot, J.F. & Guschlbauer, W. (1972) Mechanism of gel formation by guanine nucleosides. Jerusalem Symp. Quant. Chem. Biochem. 4, 205-216.
- 24. Guschlbauer, W., Chantot, J.F. & Thiele, D. (1990) Four-stranded nucleic acid structures 25 years later: from guanosine gels to telomer DMA. J. Biomol. Struct. Dyn. 8,491-511.
- 25. Blackburn. E.H. & Szostak, J.W. (1984) The molecular structure of centromers and telomers. Annu. Rev. Biochem. 53,163-194.
- 26. Courtois, Y., Fromageot, P. & Guschlbauer, W. (1968) Protonated polynucleotide structures. 3. An optical rotatory dispersion study of the protonation of DNA. Eur. J. Biochem. 6/493-501.
- 27. Zimmer, Ch., Luck, G.. Venner. H. & Fric, I. (1968) Studies on the conformation of protonated DNA. Biopolymers 6, 563-574.
- 28. Giannoni, G. & Rich. A. (1964) A polynucleotide helix containing polyinosinic acid and protonated polycytidvlic acid. Biopolymers 2, 399-413.
- 29. Thiele, D. & Guschlbauer, W. (1968) Evidence for a three-stranded complex between polv I and poly C. FEBS Lett. 1,173-175.
- 30. Thiele, D. & Guschlbauer, W. (1969) Polynucleotides protonees. VII. Transitions thermiques entre differents complexes de l'acide polyinosinique et de l'acide polv- cvtidvlique en milieu acide. Biopolymers 8, 361-378.
- 31. Thiele. D. & Guschlbauer, W. (1971) Protonated polynucleotide structures. IX. Disproportionate of polv(G)poly(C) in acid medium. Biopolymers 10,143-157. '
- 32. Marek, Ch., Thiele, D., Schneider, Ch. & Guschlbauer, W. (1978) Protonated polynucleotide structures. 22. CD study of the acid-base titration of poly(dG)-polv(dC). Nucleic Acids Res. 5,1979-1996.
- 33. Thiele, D., Marek, Ch., Schneider, Ch. & Guschlbauer, W. (1978) Protonated polynucleotide structures. 23. The acid-base hysteresis of poly(dG) poly(dC). Nucleic Acids Res. 5, 1997-2012.
- 34. Marek, Ch. & Thiele, D. (1978) Poly(dG)- poly(dC) at neutral and alkaline pH: the formation of triple stranded poly(dG)- poly(dG)-poly(dC). Nucleic Acids Res. 5, 1017-1028.
- 35. Haas, B.L, Sarocchi, M.'I'h. & Guschlbauer, W. (1976) Protonated polynucleotide structures. 20. Interaction between poly(dG)-poly(dC) and poly(rC). Nucleic Acids Res. 3,1549-1559.
- 36. Haas, B.L. & Guschlbauer, W. (1976) Protonated polynucleotide structures. 18. Interaction of oligocy tidvlates with poly(G). Nucleic Acids Res. 3,205-218.
- 37. a) Summers, W. & Szybalski, W. (1968) Size, number and distribution of poly G binding sites on the separated DNA strands of coliphage T7. Biochim. Biophys. Acta 166, 371-380; b) Mush- inski, W.E. & Spencer. J.H. (1970) Nucleotide clusters in DNA. V. The pyrimidine oligonucleotides of strands r and / of bacteriophage 17 DNA. /. Mol. Biol. 52,91-106.
- 38. Sarocchi-Landousy, M.Th., Haas, B.L. & Guschlbauer, W. (1977) Protonated polynucleotide structures. 21. Interaction of oligo- ribocytidylates with T7 DNA in neutral and acid media. Biochemistry 16,5414-5420.
- 39. Morgan, A.R. & Wells, R.D. (1968) Specificity of three-stranded complex formation between double-stranded DNA and single-stranded RNA containing repeating nucleotide sequences. ]. Mol. Biol. 37, 63-80.
- 40. Morgan, A.R. (1970) Studies on polynucleotides. XC1V. Transcription of DNA's with repeating nucleotide sequences. J. Mol. Biol. 52,441 -466.
- 41. Murray, N.L. & Morgan, A.R. (1973) Enzymatic and physical studies on the triplex dTndAnrUn Can. /. Biochem. 51,436-449.
- 42. Franois, J.C., Saison-Behmoaras, T., Thuong, N.T. & Hélène, C. (1989) Inhibition of restriction endonuclease cleavage via triple helix formation by homopyrimidine oligonucleotides. Biochemistry 28,9617-9619.
- 43. Sun, J.S., Lavery, R., Chomilier,}., Zakrzewska, K., Montenay-Garestier, T. & Hélène, C. (1991) Theoretical study of ethidium intercalation in triple-stranded DNA and at triplex-duplex junctions. J. Biomol. Struct. Dyn. 9, 425-436.
- 44. Sun, J.S., Mergny, J.L., Lavery, R., Montenay- Garestier, T. & Hélène, C. (1991) Triple helix structures: sequence dependence, flexibility and mismatch effects. /. Biomol. Struct. Dyn. 9, 411- -424.
- 45. Duval-Valentin, G., Thuong, N.T. & Hélène, C. (1992) Specific inhibition of transcription by triple-helix forming oligonucleotides. Proc. Natl. Acad. Sci. U.S.A. 89, 504-508.
- 46. Beal, P.A. & Dervan, P.B. (1991) Secondary structural motif for recognition of DNA by oligonucleotide-directed triple-helix formation. Science 251,1360-1363.
- 47. Plum, G.E., Park, Y.W., Singleton, S.F., Dervan, P.B. & Breslauer, K.J. (1990) Thermodynamic characterization of the stability and the melting behavior of a DNA triplex: a spectroscopic and calorimetric study. Proc. Natl. Acad. Sci. U.S.A. 87,9436-9440.
- 48. Mergny,J.L., Duval-Valentin,G., Nguyen,C.11., Perrouault, L.., Faucon, B., Rougee, M., Montenay-Garestier, T., Bisagni, E. & Hélène, C. (1992) Triple-helix-specific ligands. Science 256, 1681-1684.
- 49. Grigoriev, M., Praseuth, D., Guieysee, A.L., Robin, P.. Thuong, N.T., Hélène, C. & Harel- Bellan, A. (1993) Inhibition of gene expression by triple helix-directed UNA cross-linking at specific sites. Proc. Natl. Acad. Sci. U.S.A. 90. 3501-3505.
- 50. a) Moser, H.E. & Dervan, P.B. (1987) Sequence specific cleavage of a double helical DNA by oligonucleotide-directed triple-helix formation. Science 238, 645-650; b) Strobel. S.A. & Dervan, P.B. (1990) Site-specific cleavage of a yeast chromosome by oligonucleotide-directed triple-helix formation. Science 249, 73-75.
- 51. Melcher, G. (1970) The stabilisation of nucleic acid structure. Biophysik 7. 29-32.
- 52. Bobst, A.M., Rottman, F. & Cerutti, PA. (1969) Effect of the methylation of the 2'-hvdroxyl group in polvadenylic acid on its structure in weakly acid and neutral solutions and on its capability to form ordered complexes with polvuridylic acid. J. Mot. Biol. 46,221-234.
- 53. Zmudzka, B.. Janion, C. & Shugar, I). (1969) Poly-2'-0-methylcytidyIic acid and the role of the 2'OH hydroxyl in polynucleotide structure. Biochcm. Biophys. Res. Commun. 37.895-901.
- 54. Mikke, R.. Kielanowska, M., Shugar, D. ic Zmudzka, B. (1976) Poly-2'-0-ethvIcytidyIate, an inhibitor and poor template for AMV reverse transcriptase. Nucleic Acids Res. 3, 1603-1611.
- 55. Cushley, R.J., Codington, J.F. & Fox, J.J. (1968» Nucleosides. 49. NMR studies of 2'- and 3'- halogeno nucleoside conformations of 2'-deoxy-2'-fluoro-uridine and 3'-deoxv-3'- fluoro-|i-Qirabino-£uranosyl-uracil. Can. /. Chew. 34. 1131-1140.
- 56. Blandin, M., Tran-Dinh, S.. Catlin, J.C. & Guschlbauer, VV. (1974) Nucleoside conformations. 16. NMR and CD studies on pyrimidine-2'-fIuoro-2'-deoxyribosides. Bio- chim. Biophys. Acta 361, 257-265.
- 57. Uesugi, S., Miki, H., Ikehara, M., Iwahashi, H. ¿c Kyogoku, Y. (1979) A linear relationship between electronegativity of the 2'-substituents and conformation of adenine nucleosides. Tetrahedron Lett. 42, 4073-4076.
- 58. Guschlbauer, W. & Jankowski, K. (1950> Nucleoside conformation is determined by the electronegativity of the sugar substituent. Nucleic Acids Res'8.1421-1433.
- 59. Marck, C. Lesyng, B. & Saenger. W. (1982) The crystal structure of 2'-deoxv-2'-fluoro-cytidine and 2'-deoxy-2'-fluoro-uridine./. Mol. Struct. 82, 77-88.
- 60. Olson, W.K. (1982) How flexible is the furanose ring? 2. An updated potential energy estimate. /. Am. Chem. Soc. 104, 278-286.
- 61. Plach, H., Westhof, E., Liidemann, H.-D. & Mengel, R. (1977) Solution conformational analysis of 2'-amino-deoxyadenosine,3'-amino- 3'-deoxyadenosine and puromycin by pulsed NMR methods. Cur. /. Biochem. 80. 2951304.
- 62. Janik, B., Kotick, M.P., Kreiser, J.H., Revermann, C.F., Sommer, R.G. & Wilson, D.P. (1972) Synthesis and properties of poly 2'-deoxv- 2'-fluoro-uridylic acid. Biochem. Biophys. Res. Commun. 46, 1153-1160.
- 63. Guschlbauer, W., Blandin, M., Drocourt, J.L. & Thang, M.N. (1977) Poly-2'-deoxy-2'-fluoro- cytidyiic acid: enzymatic synthesis, spectroscopic characterization and interaction with polv(I). Nucleic Acids Res. 4,1933-1943.
- 64. Ikehara, M., Fukui, T. & Kakiuchi, N. (1978) Polynucleotides. Lll. Synthesis and properties of poly 2'-deoxy-2'-fluoro-adenvlic acid. Nucleic Acid* Res. 5,1877-1887.
- 65. Ikehara, M., Kakiuchi. N. & Fukui. T. (197S) Polynucleotides. LV1. Synthesis and properties of polv 2'-deoxy-2'-fluoro-inosinic acid. Nucleic Acids Res. 5, 3315-3324.
- 66. Kakiuchi, N., Marck, C., Rousseau, N., I.eng. M., DeClercq, E. & Guschlbauer, VV. (1982) Polynucleotide helix geometry and stability: Spectroscopic, antigenic and interferon inducing properties of deoxyribose, ribose and 2'-deoxy-2'-fluoro-ribose containing duplexes of poly(I)* poIv(C). J. Biol. Chem. 237,1424-1428.
- 67. Marck, C., Kakiuchi. N. & Guschlbauer, W. (1982) Reversion towards the B-form of the 2'-deoxv-2'-fluoro hybrid duplexes upon specific interaction with netropsin, distamy- cin-3 and analogues. Nucleic Acids Res. 10, 6147-6161.
- 68. Zimmer. C., Kakiuchi. N. & Guschlbauer, VV. (1982) Polynucleotide helix geometry and stability: Differential stabilization by netropsin of ind ucible B-like conforma tion in deoxv- ribo-. ribo- and 2'-deoxy-2'-fluoro-riboadenosine containing duplex of polv(dA) poly(dT) and polv(dA)-poly(dU). Nucleic Acids Res. 10, 1721-1732.
- 69. Lesvng, B., Marck, Ch. & Guschlbauer, W. (1985) Ab initio calculations on the barrier of pseudorotation of 2'-deoxy-furanose and 2'-deoxy-2'-fluoro-furanose rings. Int. J. Quant. Chem. 28, 517-552.
- 70. Hakoshima,T.,Omori, H.,Tomita,K.L.,Miki, H. & Ikehara, M. (1981) The crystal and molecular structure of 2'-deoxv-2'-fIuoroinosine mono- hvdrate. Nucleic Acids Res. 9, 711-729.
- 71. Wohlrab, F., Haertle, T., Trichtinger. T. & Guschlbauer, VV. (1978) 2'-Deoxv-2'-fluoro- -uridine-5'-phosphate: an alternative substrate tor thvmidvlate synthetase from £. coli K12 Sue I etc Acids Res. 5. 4753-4759.
- 72. Brox, L.W., LePage. G.A., Hendier. S.S. & Shahanoft, D.H. (1974) Studies on the growth inhibition and metabolism of 2'-deoxv-2'-flu- oro-cytidine in cultured human lympho- biasts. Cancer Res. 34, 1838-1842.
- 73. Pinto, D., Sarocchi-Lanclousv, M.T. & Guschl- bauer, W. (1979) 2'-Deoxy-2'-fluoro-uridine-5'- triphosphate: a possible substrate for £. coli RNA polymerase. Nucleic Acids Res. 6. 1041 — -1048.
- 74. Aoyama, 11., Sarih-Cottin. L., Tarrago-Litvak, U Litvak, S. & Guschlbauer. W. (1985) 2'-De- oxy-2'-fluoro-cytidine-5'-triphosphate is a substrate tor DNA and RNA dependent DNA polymerases. Biochim. Biophus. Acta 824, 218-224.
- 75. Aurup, H.. Williams, DM. & Eckstein, F. (1992) 2'-Fluoro- and 2'-amino-2'-deoxv-nucleoside- 5-triphosphate as substrates for T7 RNA polymerase. Biochemistry 31,9636-9641.
- 76. Kawasaki, A.M., Casper, M.D.. Freier. S.M., Leśnik, E.A., Zounes, M.C., Cummins. L.L, Gonzalez, C. & Cook, P.D. (1993) Uniformly modified 2'-deoxy-2'-fluoro phospnorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity of RNA targets.}. Med. Chem. 36,831-841.
- 77. Monia. B.P., Leśnik, E.A., Gonzalez, C., I ima, W.F.. McGee, D.. Guinosso, C.J., Kawasaki, A.M.. Cook, P.D. & Freier, S.M. (1993) Evaluation of 2'-modified oligonucleotides containing 2'-deoxy gaps as antisense inhibitors of gene expression. /. Biol. Chem. 268, 14514-14522.
- 78. Jost, J.P. & Saluz, H.P. (eds.) (1993) DNA Methylation: Molecular Biology and Biological Significance. Birkhauser, Basel.
- 79. Wilson, G.G. & Murray. N.E. (1991) Restriction and modification systems. Annu. Rev. Gniet. 25. 585-627.
- 80. Modrich, P. (1987) DNA mismatch correction. Annu. Rev. Biochem. 56, 435-466.
- 81. Radman, M. & Wagner. R. (1986) Mismatch repair in Escherichia coli. Annu. Rev. Genet. 20, 523-538.
- 82. Marinus, M.G. (1987) DNA methvlation in E. coli. Annu. Rev. Genet. 21.113-131.
- 83. Barras, F. & Marinus, M.G. (1989) The great GATC: DNA methvlation in E. coli. Trends Genet. 5. 139-143.
- 84. Fazakerley, G.V., Teoule, R., Guy, A., Fritzsche, H. & Guschlbauer, W. (1985) NMR studies in oligodeoxyribonuclcotides containing the dam methvlation site GATC. Comparison between d(GGATCC) and d(GGm6ATCC). Biochemistry 24, 4540-4548.
- 85. Quignard, E., Fazakerley, G.V., Téoule, R., Guy, A. & Guschlbauer, W. (1985) Consequences of methvlation on the amino group of adenine. A proton two-dimensional NMR study of d(GGATATCC) and d(GGm6ATATCC). Eur. J. Biochem. 152,99-105.
- 86. Quignard, E., Téoule, R., Guy, A. & Fazakerley, G.V. (1985) An NMR studv of A T base pair opening rates in oligonucleotides. Influence of sequence and of adenine methvlation. Nucleic Acids Res. 13.7829- 7836.
- 87. Fazakerley, G.V., Quignard, E., Guy, A., Teoule, R. & Guschlbauer. W. (1987) A two-dimensional 'H-NMR study of the Dam site: comparison between the hemimethylated GATC sequence, its unmethylated analogue and a hemime- thvlated CATG sequence. The sequence dependence of methylation upon base-pair life times. Eur. /. Biochem. 167,397-404.
- 88. Murchie, A.I. & Lilley, D.M. (1989) Base methylation and local helix stability. Effects on the kinetics of cruciform extrusion. /. Mol. Biol. 205, 593-602.
- 89. Engel, J.D. & von Hippel, P.H. (1974) Effects of methylation on the stability of nucleic acid conformations. Biochemistry 13,4143-415S.
- 90. Fazakerley. G.V., Kraszewski, A., Téoule, R. & Guschlbauer, W. (1987) NMR and CDstudies on an oligonucleotide containing N^methyl- cvtosine. Nucleic Acids Res. 15,2191-2201.
- 91. Fazakerley, G.V., Gabarro-Arpa, J., Lebrel, M., Gu v. A. & Guschlbauer, W. (1989) The GTm6AC sequence is overwound and bent. Nucleic Acids Res. 17,2541-2556.
- 92. Bergerat-Coulaud, A., Kriebardis, A. & Guschlbauer, W. (1989) Preferential site-specific hemimethvlation of GATC sites in pBR322 DN A by Dam methyl transferase from E. coli. /. Biol. Chem. 264. 4064-4070.
- 93. Herman, G.E. & Modrich, P. (1982) Escherichia coli dam methylase: physical and catalytic properties of the homogenous enzyme. /. Biol. Chem. 257, 2605-2612.
- 94. 3ergerat, A. & Guschlbauer, W. (1990) The double role of methyl donor and allosteric effector of S-adenosvl-methionine for Dam methylase of £. coli. Nucleic Acids Res. 18, 4369-4375.
- 95. Bergerat, A., Guschlbauer, W. & Fazakerley, G.V. (1991) Allosteric and catalytic binding of S-adenosyl-methionine to E. coli Dam methyl-transferase by 3H NMR. Proc. Natl. Acad. Sei. U.S.A. 88, 6394-6397.
- 96. Marzabal,S., Du Bo is, S., Thielking, V.,Cano. A., Hritja, R. & Guschlbauer, W. (1995) Dam methvlase from Escherichia coli: Kinetic studie> using modified DNA oligomers: hemi- methvlated substrates. Nucleic Acids Res. 23. 3648-3655.
- 97. Palecek, K. (1994) Probing DNA structure with Osmium tetroxide complexes in vitro and in cells; in Nucleic Acids and Molecular Biology (Fckstein, F. & Lilley, D.M.J., eds.) 8, pp. 1-13, Springer-Verlag, Berlin, Heidelberg.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-5ec7d5d5-4c37-479c-9186-0a2eb05467ac