Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1997 | 19 | 1 |
Tytuł artykułu

Oxidative stress in plants

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oxidative stress, defined as a shift of the balance between prooxidative and antioxidative reactions in favor of the former seems to be a common denominator of the action of various agents on living organisms. This review briefly presents the sources of reactive oxygen species and means of antioxidative defense in plants, means of assessment of oxidative stress and exemplary data on the induction of oxidative stress by various environmental and biological factors such as hyperoxia, light, drought, high salinity, cold, metal ions, pollutants, xenobiotics, toxins, reoxygenation after anoxia, experimental manipulations, pathogen infection and aging of plant organs.
Wydawca
-
Rocznik
Tom
19
Numer
1
Opis fizyczny
p.47-64,fig.
Twórcy
autor
  • University of Lodz, Banacha 12-16, 90-237 Lodz, Poland
Bibliografia
  • Apostol, I., Heinstein, P.F., Low, P.S. 1989. Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol. 90: 109–116.
  • Asada, K. 1992. Production and scavenging of active oxygen in chloroplasts. In: Molecular biology of free radical scavenging systems, ed. by J.G. Scandalios, Cold Spring Harbor Laboratory Press, Cold Spring Harbor: 173–192.
  • Asada, K., Takahashi, M. 1987. Production and scavenging of active oxygen in photosynthesis. In: Photoinhibition, ed. by D.J. Kyle, Osmond, C.B., Arntzen, C.J., Elsevier, Amsterdam: 227–288.
  • Auclair, C., Voisin, E. 1985. Nitrobluc tetrazolium reduction. In: CRC handbook of methods for oxygen radical research, ed. by R.A. Greenwald, CRC Press, Boca Raton, FL: 123–132.
  • Babior, B.M. 1991. Oxidants from phagocytes: agents of defense amd destruction. Blood 64: 959–966.
  • Baker, C.J., Orlandi, E.W., Mock, N.M. 1993. Harpin, an elicitor of the hypersensitive response in tobacco caused by Erwinia amylovora, elicits active oxygen production of suspension cells. Plant Physiol. 102: 1341–1344.
  • Baker, J.E., Wang, C.Y., Lieberman, M., Hardenburg, R. 1977. Delay of senescence in carnations by a rhizobitoxine analog and sodium benzoate. Hort Sci. 12: 38–39.
  • Baker, J.E., Wang, C.Y., Terlizzi, D.E. 1985. Delay of senescence in carnations by pyrazone, phenidone analogs and Tiron. Hort Sci. 20: 121–122.
  • Barna, B., Ádám, A.L., Király, Z. 1993. Juvenility and resistance of a superoxide-tolerant plant to diseases and other stresses. Naturwissensch. 80: 420–422.
  • Bartosz, G. 1996. Peroxynitrite: mediator of the toxic action of nitric oxide. Acta Biochim. Pol. 43: 645–660.
  • Becker, B.F. 1993. Towards the physiological function of uric acid. Free Rad. Biol. Med. 14: 615–631.
  • Beyer R.E. 1992. An analysis of the role of coenzyme Q in free radical generation and as an antioxidant. Biochem. Cell Biol. 70: 390–403.
  • Biclski, B.H.J., Richter, H.W. 1975. Some properties of the ascorbate free radical. Ann. N. Y. Acad. Sci. 258: 231–237.
  • Bird, R.P., Draper, H.H. 1984. Comparative studies on different methods of malonaldehyde determination. Methods Enzymol. 105: 299–305.
  • Bolwell, G.P., Butt, V.S., Davies, D.R., Zimmerlin, A. 1995. The origin of the oxidative burst in plants. Free Rad. Res. 23: 517–532.
  • Borraccino, G., Dipiero, S., Arrigoni, O. 1986. Purification and prooperties of ascorbate free-radical reductase from potato tubers. Planta 167: 521–526.
  • Boveris, A. 1984. Determination of the production of superoxide radicals and hydrogen peroxide in mitochondria. Methods Enzymol. 105: 429–435.
  • Bradley, D.J., Kjellbom, P., Lamb, C.J. 1992. Elicitorand wound-induced oxidative cross-linking of prolinerich plant cell wall protein: a novel, rapid defense response. Cell 70: 21–30.
  • Breen, A.P., Murphy, J.A. 1995. Reactions of oxyl radicals with DNA. Free Rad. Biol. Med. 18: 1033–1077.
  • Brot, N., Weissbach, H. 1983. Biochemistry and physiological role of methionine sulfoxide residues in proteins. Arch. Biochem. Biophys. 223: 271–281.
  • Bruce, R.J., West, C.A. 1989. Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol. 91: 889–897.
  • Buja, L.M., Eigenbrodt, M.L., Eigenbrodt, E.H. 1993. Apoptosis and necrosis. Basic types and mechanisms of cell death. Arch. Pathol. Lab. Med. 117: 1208–1214.
  • Buttke, T.M., Sandstrom, P.A. 1994. Oxidative stress as a mediator of apoptosis. Immunol. Today 15: 7–10.
  • Cai, L., Koropatnick, J., Cherian, M.G. 1995. Metallothionein protects DNA from copper-induced but not iroon-induced cleavage in vitro. Chem. Biol. Interact. 96: 143–155.
  • Cao, G., Cutler, R.G. 1995. Protein oxidation and aging. I. Difficulties in measuring reactive protein carbonyls in tissues using 2,4-dinitrophenylhydrazine. Arch. Biochem. Biophys. 320: 106–114.
  • Caro, A., Puntarulo, S. 1996. Effect of in vivo iron supplementation on oxygen radical production by soybean roots. Biochim. Biophys. Acta 1291: 245–251.
  • Chen, Z., Silva, H., Klessig, D.F. 1993. Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262: 1883–1886.
  • Corpas, F.J., Gómez, M., Hernández, J.A., del Río, L.A. 1993. Metabolism of activated oxygen in peroxisomes from two Pisum sativum L. cultivars with different sensitivity to sodium chloride. J. Plant Physiol. 141: 160–165.
  • Daub, M.E., Hangarter, R.P. 1983. Production of singlet oxygen and superoxide by the fungal toxin, cercosporin. Plant Physiol. 73: 855–857.
  • Davies, K.J.A. 1986. Intracellular proteolytic systems may function as secondary antioxidant defenses: an hypothesis. J. Free Rad. Biol. Med. 2: 155–173.
  • Davies, K.J.A., Goldberg, A.L. 1987. Proteins damaged by oxygen radicals are rapidly degraded in extracts of red blood cells. J. Biol. Chem. 262: 8227–8234.
  • Deisseroth, A., Dounce, A.L. 1970. Catalase: Physical and chemical properties, mechanism of catalysis and physiological role. Physiol. Rev. 50: 319–375.
  • del Rio, L.A., Donaldson, R.P. 1995. Production of superoxide radicals in glyoxysomal membranes from castor bean endosperm. J. Plant Physiol. 146: 283–287.
  • del Rio, L.A., Fernandez, V.M., Ruperez, F.L., Sandalio, L.M., Palma, J.M. 1989. NADH induces the generation of superoxide radicals in leaf peroxisomes. Plant Physiol. 89: 728–731.
  • del Rio, L.A., Palma, J.M., Sandalio, L.M., Corpas, F.J., Pastori, G.M., Bueno, P., López-Huertas, E. 1996. Peroxisomes as a source of superoxide and hydrogen peroxide in stressed plants. Biochem. Soc. Trans. 24: 434–438.
  • Dipiero, S., Borraccino, G. 1991. Dehydroascorbate reductase from potato tubers. Phytochem. 30: 427–429.
  • Doetsch, P.W., Helland, D.E., Haseltine, W.A. 1986. Mechanism of action of a mammalian DNA repair endonuclease. Biochemistry 25: 2212–2220.
  • Doke N. 1983. Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol. Plant Pathol. 23: 345–357.
  • Doke, N., Miura, Y., Sanchez, L.M., Park, H.J., Noritake, T., Yoshioka, H., Kawakita, K. 1996. The oxidative burst protects plants against pathogen attack: mechanism and role as an emergency signal for plant bio-defence — a review. Gene 179: 45–51.
  • Dominy, P.J., Heath, R.L. 1985. Inhibition of the K+-stimulated ATPase of the plasmalemma of pinto bean leaves by ozone. Plant Physiol. 77: 43–45.
  • Droillard, M.J., Paulin, A., Massot, J.C. 1987. Free radical production, catalase and superoxide dismutase activities and membrane integrity during senescence of petals of cut carnations (Dianthus caryophyllus). Plant Physiol. 71: 197–202.
  • Ebadi, M., Leuschen, M.P., el Refaey, H., Hamada, F.M., Rojas, P. 1996. The antioxidant properties of zinc and metallothionein. Neurochem. Int. 29: 159–166.
  • Elia, M.R., Borraccino, G., Dipiero, S. 1992. Soluble ascorbate peroxidase from potato tubers. Plant Sci. 85: 17–21.
  • Elstner, E.F. 1991. Oxygen radicals — biochemical basis for their efficacy. Klin. Wochenschr. 69: 949–956.
  • Fagan, J.M., Waxman, L. 1992. The ATP-independent pathway in red blod cells that degrades oxidant-damaged hemoglobin. J. Biol. Chem. 267: 23015–23022.
  • Farage, P.K., Long, S.P., Lechner, E.G., Baker, N. 1991. The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol. 95: 529–535.
  • Farrington, J.A., Ebert, M., Land, E.J., Fletcher, K. 1973. Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the mode of action of bipyridyl herbicides. Biochim. Biophys. Acta 314: 372–381.
  • Feierabend, J., Streb, P., Schmidt, M., Dehne, S., Shang, W. 1996. Expression of catalase and its relation to light stress and stress tolerance. In: Physical stresses in plants. Genes and their products for tolerance, ed. by S. Grillo, Leone, A., Springer, Berlin, Heidelberg, New York, Barcelona, Budapest, Hong Kong, London, Milan, Paris, Santa Clara, Singapore, Tokyo: 223–234.
  • Flohé, L., Schlegel, W. 1971. Glutathion-peroxidase. IV. Hoppe-Seyler’s Z. Physiol. Chem. 352: 1401–1410.
  • Foster, J.G., Hess, J.L. 1980. Responses of superoxide dismmutase and glutathione peroxidase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66: 482–487.
  • Foti, M., Piattelli, M., Baratta, M.T., Ruberto, G. 1996. Flavonoids, coumarins, and cinnamic acids as antioxidants in a micellar system. Structure-activity relationship. J. Agr. Food Chem. 44: 497–501.
  • Foyer, C.H., Souriau, N., Perret, S., Lelandais, M., Kunert, K.-J., Pruvost, C., Jouanin, L. 1995. Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109: 1047–1057.
  • Frei, B., Kim, M.C., Ames, B.N. 1990. Ubiquinol-10 is an effective lipid-soluble antioxidant at physiological concentrations. Proc. Natl. Acad. Sci. USA 87: 4879–4883.
  • Fridovich I. 1978. The biology of oxygen radicals. Science 201: 875–880.
  • Fridovich I. 1985. Cytochrome c. In: CRC handbook of methods for oxygen radical research, ed. by R.A. Greenwald, CRC Press, Boca Raton, FL: 121–122.
  • Furbank, R.T., Badger, M.R. 1983. Oxygen exchange associated with electron transport and photophosphorylation in spinach chloroplasts. Biochim. Biophys. Acta 723: 400–409.
  • Gérard-Monnier, D., Chaudiere, J. 1996. Métabolisme et fonction antioxydante du glutathion. Path. Biol. 44: 77–85.
  • Gille, G., Sigler, K. 1995. Oxidative stress and living cells. Folia Microbiol. 40: 131–152.
  • Graf E. 1992. Antioxidant potential of ferulic acid. Free Rad. Biol. Med. 13: 435–448.
  • Graf, E., Eaton, J.W. 1990. Antioxidant functions of phytic acid. Free Rad. Biol. Med. 8: 61–69.
  • Greenberg, J.T., Guo, A., Klessig, D.F., Ausubel, F.M. 1994. Programmed cell death in plants: a pathogentriggered response activated coordinately with multiple defense functions. Cell 77: 551–563.
  • Gupta, A.S., Heinen, J.L., Holaday, A.S., Burke, J.J., Allen, R.D. 1993. Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proc. Natl. Acad. Sci. USA 90: 1629–1633.
  • Gutteridge J.M.C. 1986. Aspects to consider when detecting and measuring lipid peroxidation. Free Rad. Res. Comm. 1: 173–184.
  • Halliwell B. 1982. The toxic effects of oxygen on plant tissues. In: Superoxide dismutase, ed. by L.W. Oberley, CRC Press, Boca Raton, FL: 89–123.
  • Halliwell, B., Gutteridge, J.M.C. 1989. Free Radicals in Biology and Medicine. Clarendon Press, Oxford.
  • Hendry, G.A.F. 1993. Oxygen, free radical processes and seed longevity. Seed Sci. Res. 3: 141–153.
  • Hernández, J.A., Corpas, F.J., Gómez, M., del Rio, L.A., Sevilla, F. 1993. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria. Physiol. Plant. 89: 103–110.
  • Hertwig, B., Streb, A., Feierabend, J. 1992. Light dependence of catalase synthesis and degradation in leaves and the influence of interfering stress conditions. Plant Physiol. 100: 1547–1553.
  • Hippeli, S., Elstner, E.F. 1996. Mechanisms of oxygen activation suring plant stress: biochemical effects of air pollutants. J. Plant Physiol. 148: 249–257.
  • Holmgren A. 1989. Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264: 13963–13966.
  • Ingold, K.U., Webb, A.C., Witter, D., Burton, G.W., Metcalfe, T.A., Muller, D.P.R. 1987. Vitamin E remains the major lipid-soluble, chain-breaking antioxidant in human plasma even in individuals suffering severe vitamin E deficiency. Arch. Biochem. Biophys. 259: 224–225.
  • Jacks, T.J., Davidonis, G.H. 1996. Superoxide, hydrogen peroxide, and the respiratory burst of fungally infected plant cells. Mol. Cell. Biochem. 158: 77–79.
  • Jahnke, L.S., Hull, M.R., Long, S.P. 1991. Chilling stress and oxygen metabolizing enzymes in Zea mays and Zea diploperennis. Plant Cell Environm. 14: 97–104.
  • Janzen E.G. 1990. Spin trapping and associated vocabulary. Free Rad. Res. Comm. 9: 163–167.
  • Kamal-Eldin, A., Appelqvist, L.-A. 1996. The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31: 671–701.
  • Kauss, H., Jeblick, W. 1995. Pretreatment of parsley suspension cultures with salicylic acid enhances spontaneous and elicited production of H2O2. Plant Physiol. 108: 1171–1178.
  • Khan, A.U., Wilson, T. 1995. Reactive oxygen species as cellular messengers. Chem. Biol. 2: 437–445.
  • Kirtikara, K., Talbot, D. 1996. Alteration in protein accumulation, gene expression and ascorbate-glutathione pathway in tomato (Lycopersicon esculentum) under paraquat and ozone stress. J. Plant Physiol. 148: 752–760.
  • Kozubek, A., Nienartowicz, B. 1995. Cereal grain resorcinolic lipids inhibit H2O2-induced peroxidation of biological membranes. Acta Biochim. Pol. 42: 309–316.
  • Larrgilliere, C., Mélancon, S.B. 1988. Free malondialdehyde determination in human plasma by high-performance liquid chromatography. Anal. Biochem. 170: 123–126.
  • Legendre, L., Rueter, S., Heinstein, P.F., Low, P.S. 1993. Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol. 102: 233–240.
  • Leshem Y.Y. 1988. Plant senescence processes and free radicals. Free Rad. Biol. Med. 5: 39–49.
  • Leshem, Y.Y., Haramaty, E. 1996. The characterization and contrasting effects of the nitric oxide free radical in Pisum sativum Linn. foliage. J. Plant Physiol. 148: 258–263.
  • Levine, A., Tenhaken, R., Dixon, R., Lamb, C. 1994. H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79: 583–593.
  • Levine, R.L., Garland, D., Oliver, C.N., Amici, A., Climent, I., Lenz, A., Ahn, B.W., Shaltiel, S., Stadtman, E.R. 1990. Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol. 186: 464–477.
  • Lim, B.P., Nagao, A., Terao, J., Tanaka, K., Suzuki, T., Takama, K. 1992. Antioxidant activity of xanthophylls on peroxyl radical-mediated phospholipid peroxidation. Biochim. Biophys. Acta 1126: 178–184.
  • Lind, C., Hochstein, P., Ernster, L. 1982. DT-Diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation. Arch. Biochem. Biophys. 216: 178–185.
  • Lobreaux, S., Briat, J.-F. 1991. Ferritin accumulation and degradation in differrent organs of pea (Pisum sativum) during development. Biochem. J. 274: 601–606.
  • Low, P.S., Heinstein, P.F. 1986. Elicitor stimulattion of the defense response in cultured plant cells monitored by fluorescent dyes. Arch. Biochem. Biophys. 249: 472–479.
  • Low, P.S., Merida, J.R. 1996. The oxidative burst in plant defense: function and signal transduction. Physiol. Plant. 96: 533–542.
  • Matters, G.L., Scandalios, J.G. 1986. Changes in plant gene expression during stress. Dev. Genet. 7: 167–175.
  • McCord, J., Fridovich, I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049–6055.
  • McCord J.M. 1985. Oxygen-derived free radicals in postischemic tissue injury. N. Engl. J. Med. 312: 159–163.
  • McKersie, B.D., Bowley, S.R., Harjanto, E., Leprince, O. 1996. Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol. 111: 1177–1181.
  • McKersie, B.D., Chen, Y., de Beus, M., Bowley, S.R., Bowley, C., Inzé, D., D’Halluin, K., Botterman, J. 1993. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa (Medicago sativa L.). Plant Physiol. 103: 1155–1163.
  • Meister A. 1983. Selective modification of glutathione metabolism. Science 220: 472–477.
  • Michalski, W.P., Kaniuga, Z. 1982. Photosynthetic apparatus of chilling-sensitive plants. XI. Reversibility by light of cold- and dark-induced inactivation of cyanide-sensitive superoxide dismutase activity in tomato leaf chloroplasts. Biochim. Biophys. Acta 680: 250–257.
  • Monk, L.S., Fagerstedt, K.V., Crawford, R.M. 1989. Oxygen toxicity and superoxide dismutase as an antioxidant in physiological stress. Physiol. Plant. 76: 456–459.
  • Mostowska A., Gwóźdź E.A. 1995. Reaction of photosynthetic apparatus to oxidative stress. Post. Biol. Kom. 22: 43–63.
  • Motoyama, T., Miki, M., Mino, M., Takahashi, M., Niki, E. 1989. Synergistic inhibition in dispersed phosphatidylcholine liposomes by a combination of vitamin E and cysteine. Arch. Biochem. Biophys., 270: 655–661.
  • Mullineaux, P.M., Creissen, G.P. 1996. Opportunities for the genetic manipulation of antioxidants in plant foods. Biochem. Soc. Trans. 24: 829–835.
  • Murphy, M.E., Sies, H. 1990. Visible-range low-level chemiluminescence in biological systems. Methods Enzymol. 186: 595–610.
  • Navari-Izzo, F., Quartacci, M.F., Sgherri, C.M.L. 1996. Superoxide generation in relation to dehydration and rehydration. Biochem. Soc. Trans. 24: 447–451.
  • Neužil, J., Stocker, R. 1993. Bilirubin attenuates radical-mediated damage to serum albumin. FEBS Lett. 331: 281–284.
  • Okuda, T., Matsuda, Y., Sugawara, M., Sagisaka, S. 1992. Metabolic response to treatment with cold, paraquat or 3-amino-1,2,4-triazole in leaves of winter wheat. Biosci. Biotechnol. Biochem. 56: 1911–1915.
  • Palozza, P., Krinsky, N.I. 1992. Astaxanthin and canthaxanthin are potent antixoidants in a membrane model. Arch. Biochem. Biophys. 297: 291–295.
  • Park, E.M., Shigenaga, M.K., Degan, P., Korn, T.S., Kitzler, J.W., Wehr, C.M., Kolachana, P., Ames, B.N. 1992. Assay of excised oxidative DNA lesions: isolation of 8-oxoguanine and its nucleoside derivatives from biological fluids with a monoclonal antibody column. Proc. Nat. Acad. Sci. USA 89: 3375–3379.
  • Pastori, G.M., Trippi, V.S. 1992. Oxidative stress induces high rate of glutathione reductase synthesis in a drought-resistant maize strain. Plant Cell Physiol. 33: 957–961.
  • Paulin, A., Droillard, M., J., Bureau, J.M. 1986. Effect of a free radical scavenger, 3,4,5-trichlorophenol, on ethylene production and on changes in lipids and membrane integrity during senscence of petals of cut carnations (Dianthus caryophyllus). Physiol. Plant. 67: 465–471.
  • Peskin A.V. 1997. Cu,Zn-superoxide dismutase gene dosage and cell resistance to oxidative stress: a review. Biosci. Rep. in press.
  • Pick E. 1986. Microassays for superoxide and hydrogen peroxide production and nitriblue tetrazolium reduction using and enzyme immunoassay microplate reader. Methods Enzymol. 132: 407–421.
  • Pitcher, L.H., Brennan, E., Hurley, A., Dunsmuir, P., Tepperman, J.M., Zilinskas, B.A. 1991. Overproduction of petunia copper/zinc superoxide dismutase does not confer ozone tolerance in transgenic tobacco. Plant Physiol. 97: 452–455.
  • Poli, G., Albano, E., Dianzani, M.U., Eds. 1993. Free Radicals: From Basic Science to Medicine. Birkhäuser Verlag, Basel, Boston, Berlin.
  • Polle, A., Pfirrman, T., Chakrabarti, S., Rennenberg, H. 1993. The effects of enhanced ozone and enhanced carbon dioxide concentrations on biomass, pigments and antioxidative enzymes in spruce needles (Picea abies L.). Plant Cell Environm. 16: 311–316.
  • Price, A., Knight, M., Knight, H., Cuin, T., Tomos, D., Ashenden, T. 1996. Cytosolic calcium and oxidative plant stress. Biochem. Soc. Trans. 24: 479–483.
  • Price, A.H., Atherton, N.M., Hendry, G.A.F. 1989. Plants under drought-stress generate activated oxygen. Free Rad. Res. Comm. 8: 61–66.
  • Pryor W.A. 1986. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Ann. Rev. Physiol. 48: 657–667.
  • Przymusiński R., Rucińska R., Gwóźdź E.A. 1995. The stress-stimulated 16 kDa polypeptide from lupin roots has properties of cytosolic Cu,Zn-superoxide dismutase. Env. Exp. Bot. 35: 485–495.
  • Rabinovitch, H.D., Sklan, D. 1981. Superoxide dismutase activity in ripening cucumber and pepper fruit. Physiol. Plant. 52: 380–384.
  • Rabinowitch, H.D., Fridovich, I. 1983. Superoxide radicals, superoxide dismutases and oxygen toxicity in plants. Photochem. Photobiol. 37: 679–690.
  • Rabinowitch, H.D., Sklan, D. 1980. Superoxide dismutase: a possible protective agent against sunscald in tomatoes (Lycopersicon esculentum L.). Planta 148: 162–167.
  • Redinbaugh, M.G., Sabre, M., Scandalios, J.G. 1990. The distribution of catalase activity, isozyme protein, and transcript in the tissues of the developing maize seedling. Plant Physiol. 92: 375–380.
  • Rhee, S.G., Chae, H.Z. 1994. Thioredoxin peroxidase and peroxiredoxin family. Mol. Cells 4: 137–142.
  • Robak, J., Gryglewski, R.J. 1988. Flavonoids are scavengers of superoxide anions. Biochem. Pharmacol. 37: 837–841.
  • Sabri, N., Pelissier, B., Teissié, J. 1996. Electroperme-abilization of intact maize cells induces an oxidative stress. Eur. J. Biochem. 238: 737–743.
  • Sakagami, H., Sakagami, T., Yoshida, H., Omata, T., Shiota, F., Takahashi, H., Kawazoe, Y., Takeda, M. 1995. Hypochlorite scavenging activity of polyphenols. Anticancer Res. 15: 917–922.
  • Scandalios J.G. 1992. Regulation of the antioxidant defense genes Cat and SOD of maize. In: Molecular biology of free radical scavenging systems, ed. by J.G. Scandalios, Cold Spring Harbor Laboratoty Press, Cold Spring Harbor: 117–152.
  • Scandalios J.G. 1993. Oxygen stress and superoxide dismutases. Plant Physiol. 101: 7–12.
  • Schaedle, M., Bassham, J.A. 1977. Chloroplast glutathione reductase. Plant Physiol. 59: 1011–1012.
  • Serbinova, E., Kagan, E., Han, D., Packer, L. 1991. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-to-cotrienol. Free Rad. Biol. Med. 10: 263–275.
  • Shigenaga, M.K., Aboujaoude, E.N., Chen, Q., Ames, B.N. 1994. Assays of oxidative DNA damage biomarkers 8-oxo-2′-deoxyguanosine and 8-oxoguanine in nuclear DNA and biological fluids by high-performance liquid chromatography with electrochemical detection. Methods Enzymol. 234: 16–33.
  • Sies H., Ed. 1991. Oxidative Stress-Oxidants and Anti-oxidants. Academic Press, New York.
  • Simontacchi, M., Caro, A., Fraga, C.G., Puntarulo, S. 1993. Oxidative stress affects a-tocopherol content in soybean embryonic axes upon imbibition and following germination. Plant Physiol. 103: 949–953.
  • Simontacchi, M., Caro, A., Puntarulo, S. 1995. Oxygen-dependent increase of antioxidants in soybean embryonic axes. Int. J. Biochem. Cell Biol. 27: 1221–1229.
  • Stadtman E.R. 1991. Ascorbic acid and oxidative inactivation of proteins. Am. J. Clin. Nutr. 54: 1125S-1128S.
  • Stadtman E.R. 1992. Protein oxidation and aging. Science 257: 1220–1224.
  • Stocker, R., Yamamoto, Y., McDonagh, A.F., Glazer, A.N., Ames, B.N. 1987. Bilirubin is an antioxidant of possible physiological importance. Science 235: 1043–1046.
  • Strother S. 1988. The role of free radicals in leaf senescence. Gerontology 34: 151–156.
  • Sun, W.Q., Leopold, A.C. 1995. The Maillard reaction and oxidative stress during aging of soybean seeds. Physiol. Plant. 94: 94–104.
  • Sylvestre, I., Droillard, M.-J., Bureau, J.-M., Paulin, A. 1989. Effects of the ethylene rise on the peroxidation of membrane lipids during the senescence of cut carnations. Plant Physiol. Biochem. 27: 407–413.
  • Tanaka, K., Sugahara, K. 1980. Role of superoxide dismutase in defese against SO2 toxicity and an increase in superoxide dismutase activity with SO2 fumigation. Plant Cell Physiol. 21: 601–611.
  • Tepperman, J.M., Dunsmuir, P. 1990. Transformed plants with elevated levels of chloroplastic SOD are not more resistant to superoxide toxicity. Plant Mol. Biol. 14: 501–511.
  • Thomas, J.P., Geiger, P.G., Maiorino, M., Ursini, F., Girotti, A.W. 1990. Enzymatic rduction of phopholipid and cholesterol hydroperoxides in artificial bilayers and lipoproteins. Biochim. Biophys. Acta 1045: 252–260.
  • Thompson, J.E., Legge, R.L., Barber, R.F. 1987. The role of free radicals in senescence and wounding. New Phytol. 105: 317–344.
  • Wardman, P., Candeias, L.P. 1996. Fenton chemistry: an introduction. Radiat. Res. 145: 525–531.
  • Wilson, D.O., McDonald, M.B. 1986. The lipid peroxidation model of seed aging. Seed Sci. Technol. 14: 269–300.
  • Wiseman H. 1993. Vitamin D is a membrane antioxidant. Ability to inhibit iron-dependent lipid peroxidation in liposomes compared to cholesterol, ergosterol and tamoxifen and relevance to anticancer action. FEBS Lett. 326: 285–288.
  • Yamamoto, Y., Frei, B., Ames, B.N. 1990. Assay of lipid hydroperoxides using HPLC with isoluminol chemiluminescence detection. Methods Enzymol. 186: 371–379.
  • Zenk M.H. 1996. Heavy metal detoxification in higher plants — a review. Gene 179: 21–30.
  • Zhang, J., Kirkham, M.B. 1994. Drought stress-induced changes in activities of superoxide dismutase, catalase and peroxidase in wheat species. Plant Cell Physiol. 35: 785–791.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-5de3a918-2437-435a-a38d-a4f5dab8f56d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.