Warianty tytułu
Citric acid as a siderophore of enterococci?
Języki publikacji
Abstrakty
Zbadano 70 szczepów z rodzaju Enterococcus aby wyjaśnić czy kwas cytrynowy może pełnić u nich rolę sideroforu uczestniczącego w zaopatrywaniu komórek w żelazo. W różnych warunkach dostępności żelaza badano uwalnianie kwasu cytrynowego, wykorzystywanie kompleksu Fe3+-dicytrynian do stymulacji wzrostu i pobierania tego kompleksu do komórek.
In the pool of 70 enterococal strains of the genus Enterococcus 61,4% released citrate into the medium. This metabolite has occurred more frequently in E. faecium strains. There was no correlation between hydroxamate siderophores production and citrate releasing. Only nine (10, 3%) of 70 strains have used Fe3+-dicitrate complex as iron sources. Iron restricted condition causing moderate inhibition of growth have not increased citrate releasing. When iron deficiency has caused stronger growth inhibition, E. faecalis strains did not release citrate and E. faecium strains its smaller amounts. The resting cells grown in iron-restricted condition have incorporated S9Fe3+ complexed by citrate more active than cells grown in the medium with excess of iron. So, citrate has not been a siderophore in enterococci.
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
29-40
Opis fizyczny
29-40.tab.,wykr.,bibliogr.
Twórcy
autor
- Zaklad Mikrobiologii Farmaceutycznej, ul.Pomorska 137, 90-235 Lodz
autor
Bibliografia
- 1. Adams TJ, Vartivarian S, Cowart R E. Iron acquisition system of Listeria monocytogenes. Infect Immun 1990; 58: 2715-8.
- 2. Archibald RS, De Voe IW. Iron acquisition by Neisseria meningitides. Infect Immun 1980; 27: 322-34.
- 3. Bandell M, Lhotte ME, Marty-Teysset C i inni. Mechanism of citrate transporters in carbohydrate and citrate cometabolism in Lactococcus and Leuconostoc species. App Environ Microbiol 1998; 64: 1594-600.
- 4. Cogan TM. Constitutive nature of the enzymes of citrate metabolism in Streptococcus lactis subsp. diacetylactis. J Dairy Res 1981; 48: 489-95.
- 5. Condon S. Responses of lactic acid bacteria to oxygen. FEMS Microbiol Rev 1987; 46:269-80.
- 6. Coventry MJ, Hillier AJ, lago GR. The metabolism of pyruvate and citrate in the thermoduric cheese starter Streptococcus faecium. Aust. J Dairy Technol 1978; 33: 148-54.
- 7. Cox CD. Iron uptake from ferripyochelin and ferric citrate by Pseudomonas aeruginosa. J Bacteriol 1980; 142: 581-7.
- 8. Drechsel H, Thieken A, Reissbrodt R i inni. α-Keto acids are novel siderophores in the genera Proteus, Providencia, and Morganella and are produced by amino acid deaminases. J Bacteriol 1993; 175: 2727-33.
- 9. Emery TF, Neilands J B. Further observations concerning the periodic acid oxidation of hydroxylamine derivatives. J Org Chem 1962; 27: 1075-7.
- 10. Flossman KD, Feist H, Erler W. Enprodukte der glucose-fermentation von Pasteurella multocida und P. haemolytica. Z Alig Mikrobiol 1976; 16: 259-62.
- 11. Freitas AC, Pintado AE, Pintado ME i inni. Organic acids produced by lactobacilli, enterococci and yeast isolated from Picante cheese. Eur Food Res Technol 1999; 209: 434-8.
- 12. Gadia MK, Mehra MC. Rapid spectrophotometric analysis of total and ionic iron in the µg range. Microchemica Acta (Wien) 1977; 11: 413-8.
- 13. Guerinot ML, Meidl EJ, Plessner O. Citrate as a siderophores in Bradyrhizobium japonicum. J Bacteriol 1990; 172: 3298-203.
- 14. Harding RA, Royt PW. Acquisition of iron from citrate by Pseudomonas aeruginosa. J Gen Microbiol 1990; 136: 1859-67.
- 15. Hayashi T, Tsuchiya H, Todoriki H i inni. High-performance liquid chromatographic determination of α-keto acids in human urine and plasma. Anal Biochem 1982; 122:173-9.
- 16. Heuck D, Beer W, Reissbrotd R. Iron supply of staphylococci and micrococci by α-keto-/ α-hydroxyacids. FEMS Microbiol Lett 1996; 43: 26-32.
- 17. Heuck D, Witte W, Braulke C i inni. Susceptibility of desferrioxamine and other chelators of coagulase-negative staphylococci. Zbl Bakteriol 1994; 280: 304-11.
- 18. Hugenholtz J. Citrate metabolism in lactic acid bacteria. FEMS Microbiol Rev 1993; 12:165-78.
- 19. Kennes C, Dubourguier HC, Abagnac G i inni. Citrate metabolism by Lactobacillus plantarum isolated from orange juice. J Appl Bacteriol 1991; 70: 380-4.
- 20. Lisiecki P, Wysocki P, Mikucki J. Occurrence of siderophores in enterococci. Zbl Bakteriol 1999; 289: 807-15.
- 21. Mazoy R, Botana LM, Lemos ML. Iron uptake from ferric citrate by Vibrio anguillarum. FEMS Microbiol Lett 1997; 154: 145-50.
- 22. National Committee for Clinical Laboratory Standards (NCCLS), Methods of dilution antimicrobial susceptibility test for bacteria that grow aerobically, Fourth edition, Document M7-A6, 1997.
- 23. Messenger AJM, Ratledge C. Iron transport in Mycobacterium smegmatis: uptake of iron from ferric citrate. J Bacteriol 1982; 149: 131-5.
- 24. Mikucki J, Lisiecki P. Siderofory-agresyny bakterii. Post Mikrobiol 1998; 37,1: 73-97.
- 25. Moody MD, Dailey HA. Siderophores utilization and iron uptake by Rhodopseudomonas spheroids. Arch Biochem Biophys 1984; 234: 178-86.
- 26. Murry BE. The life and times of the enterococci. Clin Microbiol Rev 1990; 3: 46-65.
- 27. Ratledge C, Dover L. G. Iron metabolism in pathogenic bacteria. Ann Rev Microbiol 2000; 54, 881-941.
- 28. Raunio R. Accumulation of keto acids during the growth cycle of E. coli. Acta Chem Scand 1966; 20: 11-16.
- 29. Reissbrotd R, Kingsley R, Rabsch W i inni. Iron-regulated excretion of α-ketoacids by Salmonella typhimurium. J Bacteriol 1997; 179: 4538-44.
- 30. Sarantinopoulos P, Kalantzopoulos G, Tskalidou E. Citrate metabolism by Enterococcus faecalis FAIR-E 229. Appl Environ Microbiol 2001; 67: 5482-7.
- 31. Stevenson P, Griffiths. Growth of E. coli under iron-restricted condition. W: The virulence of E. coli. Red. M. Sussman, Academic Press, Inc., New York, 1985, 413-47.
- 32. Urdaneta D, Raffe G, Ferrer В i inni. Short-chain organie acids produced on glucose, lactose and citrate media by Enterococcus faecalis, Lactobacillus casei and Enterobacter aerogenes strains. Bioresource Technol 1995; 54: 99-103.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-5a734763-0385-449a-85bf-95d09a48dbe1