Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2009 | 18 | 4 | 569-577
Tytuł artykułu

Effects of phenol, catechol, chloro- and metylphenol on human erythrocyte membrane [in vitro]

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study continues our investigations concerning the interaction of phenol, catechol, 2,4-dichlorophenol (2,4-DCP), 2,4,5-trichlorophenol (2,4,5-TCP) and 2,4-dimethylphenol (2,4-DMP) with human erythrocytes. We focus on the effects of these compounds on erythrocyte membrane fluidity, as well as on their impact on membrane proteins. The fluorimetric method and fluorescent probes (ANS, DPH and TMA-DPH) were used to estimate the fluidity of erythrocyte membranes. SDS-gel electrophoresis was carried out to separate the proteins of the cell membrane. Additionally, an analysis of disturbances in size and shape of the erythrocytes by the application of the methods of flow cytometry and microscopic examination was performed. It was observed that phenol derivatives like 2,4-DCP, 2,4,5-TCP, 2,4-DMP and catechol induced changes in membrane fluidity and perturbations in the content of a cell’s membrane proteins. Changes in the level of spectrin, band 3 protein and low molecular weight proteins were also noted. Using three fluorescent probes we observed different changes in membrane fluidity on its different layers, depending on the structure and the concentration of the compound used. The application of flow cytometry and microscopic technique also demonstrated disturbances in the size and shape of erythrocytes. We concluded that chlorophenols induced more severe changes in erythrocyte membrane properties and phenol expressed the lowest toxicity.
Wydawca
-
Rocznik
Tom
18
Numer
4
Strony
569-577
Opis fizyczny
p.569-577,fig.,ref
Twórcy
autor
  • Department of Biophysics of Environmental Pollution, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Department of Thermobiology University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
  • Department of Biophysics of Environmental Pollution, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
autor
  • Department of Biophysics of Environmental Pollution, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
Bibliografia
  • 1. MICHAŁOWICZ J., The occurrence of chlorophenols, chlorocatechols and chlorinated methoxyphenols in drinking water of the largest cities in Poland. Pol. J. Environ. Stud. 14, 327, 2005.
  • 2. KJĂLLSTRAND J., PETERSSON G., Phenolic antioxidants in alder smoke during industrial meat curing. Food Chem. 74, 85, 2001.
  • 3. SCHWEIGERT N., AlEXANDER J., ZEHNDER J., Chemical properties of catechols and their molecular modes of toxic action in cells from microorganisms to mammals. Environ. Microbiol. 3, 81, 2001.
  • 4. WAN J., WINN L.M., The effects of benzene and the metabolites phenol and catechol on c-Myb and Pim-1 signaling in HD3 cells. Toxicol. Appl. Pharmacol. 201, 194, 2004.
  • 5. HORI T.S.F., AVILEZ I.M., IWAMA G.K., JOHNSON S.C., MORAES G., ALFONSO L.O.B., Impairment of the stress response in matrinxa juveniles (Brycon amazonicus) exposed to low concentrations of phenol. Comp. Biochem. Physiol. Part C 147, 416, 2008.
  • 6. BUKOWSKA B., MICHAŁOWICZ J., KROKOSZ A., SICIŃSKA P., Comparison of the effect of phenol and its derivatives on protein and free radical formation in human erythrocytes (in vitro). Blood Cell Mol. Dis. 39, 238, 2007.
  • 7. MICHAŁOWICZ J., BUKOWSKA B., DUDA W., The differences in phenolic content in rivers exposed and nonexposed to anthropogenic contamination. Chemosphere 71, 735, 2008.
  • 8. BUKOWSKA B., Effects of 2,4-D and its metabolite 2,4-dichlorophenol on antioxidant enzymes and level of glutathione in human erythrocytes. Comp. Biochem. Physiol. Part C 135/4, 435, 2003.
  • 9. BUKOWSKA B., 2,4,5-T and 2,4,5-TCP induce oxidative damage in human erythrocytes: role of glutathione. Cell Biol. Int. 28, 557, 2004.
  • 10. BUKOWKSKA B., HUTNIK K., Phenoxyherbicides and their derivatives: Effect on the activity of erythrocytes acetylcholinesterase (in vitro). Pest. Biochem. Physiol. 85, 174, 2006.
  • 11. DUCHNOWICZ P., SZCZEPANIAK P., KOTER M., Erythrocyte membrane protein damage by phenoxyacetic herbicides. Pest. Biochem. Physiol., 82, 59, 2005.
  • 12. DUCHNOWICZ P., KOTER M., Damage to the erythrocyte membrane caused by chlorophenoxyacetic herbicides. Cell Mol. Biol. Lett. 8, 25, 2003.
  • 13. CARINI M., ALDINI G., BOMBARDELLI E., MORAZZONI P., FACINO R.M., UVB-induced hemolysis of rat erythrocytes: protective effect of procyanidins from grape seeds. Life Sciences 67, 1799, 2000.
  • 14. MICHAŁOWICZ J., DUDA W., Phenols – the sources and toxicity. Pol. J. Environ. Stud. 16, 78, 2007.
  • 15. DODGE J.T., MITCHELL C., HANAHAN D.J., The preparation and chemical characteristics of hemoglobin-free ghosts of human erythrocytes. Arch. Biochem. Biophys. 100, 119, 1963.
  • 16. LOWRY O.H., ROSENBROUGH N.J., LEWIS FARR A., ROSE J.R., Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265, 1951.
  • 17. LAEMMLI U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680, 1970.
  • 18. FAIRBANKS G., STECK T.L., Wallach DFH. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 10, 2606, 1971.
  • 19. De GROOTH B.G., TERSTAPPEN L.W., PUPPLES G.J., GREVE J., Light-scattering polarization measurements as a new parameter in flow cytometry. Cytometry 8, 539, 1987.
  • 20. LAKOWICZ J.R., Principles of Fluorescence Spectroscopy. Kluwer Academic Publishers, New York, 1999.
  • 21. SINGER S.J., NICOLSON G.L., The fluid mosaic model of the structure of cell membranes. Science 175, 720, 1972.
  • 22. MARCZAK A., JÓŹWIAK Z., The interaction of DNR and glutaraldehyde with cell membrane proteins leads to morphological changes in erythrocytes. Cancer Lett. 26, 118, 2008.
  • 23. SOSZYŃSKI M., SCHUESSLER H., Effect of X-irradiation on erythrocyte membrane proteins. Primary radicals. Int. J. Radiat. Biol. 60, 859, 1991.
  • 24. MARCZAK A, WALCZAK M, JÓŹWIAK Z. The combined effect of IDA and glutaraldehyde on the erythrocyte membrane proteins. Int. J. Pharm. 335, 154, 2007.
  • 25. SUWALSKY M., RAMOS P., VILLENA F., AQUILAR F., SOTOMAYOR C.P., The Organophosphorus Insecticide Parathion Canges Properties of natural and Model membranes. Pest. Biochem. Physiol. 70, 74, 2001.
  • 26. SHEETZ M.P., SINGER S.J., Biological membranes as bilayer couples. Amechanism of drug-erythrocyte interactions. Proc. Natl. Acad. Sci. USA, 71, 4457, 1974.
  • 27. BUKOWSKA B., KOWALSKA S., Phenol and catechol induce prehemolytic and hemolytic changes in human erythrocytes. Toxicol. Lett. 52, 73, 2004.
  • 28. DUCHNOWICZ P., KOTER M., DUDA W., Damage of erythrocyte by phenoxyacetic herbicides and their metabolites. Pest. Biochem. Physiol. 74, 1, 2002.
  • 29. LI F., JI L., OH K., Hydroxyl radical generation and oxidative stress in Carassius auratus liver as affected by 2,4,6-trichlorophenol. Chemosphere 67, 13, 2007.
  • 30. BUKOWSKA B., RYCHLIK B., KROKOSZ A., MICHAŁOWICZ J., Phenoxyherbicides induce production of free radicals in human erythrocytes: Oxidation of dichlorodihydrofluorescine and dihydrorhodamine 123 by 2,4-D-Na and MCPA-Na. Food Chem. Toxicol. 46, 359, 2008.
  • 31. CRUZ SILVA M.M., MADEIRA V.M., ALMEIDA L.M., CUSTODIO J.B., Hemolysis of human erythrocytes induced by tamoxifen is related to disruption of membrane structure. Biochim. Biophys. Acta 1464, 49, 2000.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-59979427-cc98-4d43-901a-35a42da3302d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.