Czasopismo
Tytuł artykułu
Warianty tytułu
Języki publikacji
Abstrakty
Inflammatory cytokines, including TNF-α, are produced by mononuclear leukocytes in response to numerous agents, such as microorganisms and microbial products, e.g., lipopolysaccharides (LPSs). We studied the modulation of LPS-induced release of TNF-α from human mononuclear cells by inositol hexaphosphate (IP6). This naturally occurring phytochemical, abundantly present in a regular diet, possesses several pharmacological activities beneficial for human health involving anticancer function and the ability to enhance the immune system. The present study on the effect of IP6 on the challenge of host defense system in cases of endotoxemia adds more to physiological importance of IP6 in terms of its immunomodulatory activity. Incubation of cells with IP6 alone (up to 250 µM) had no effect upon the basal secretion of TNF-α, whereas at higher doses it acted as an agonist by up-regulating the cytokine release. Incubation of cells with IP6 prior to LPS challenge resulted in differential effects which were dependent on triggering LPS. The response of cells to LPS from Desulfovibrio desulfuricans and Escherichia coli was diminished by IP6. Cell priming by IP6, resulting in up-regulation of TNF-α release was observed with Salmonella minnesota LPS stimulation. These results indicate that IP6 may exert immunoregulatory effects on mononuclear cell function and control their level of activation states.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Numer
Strony
283-290
Opis fizyczny
p.283-290,fig.,ref.
Twórcy
autor
- Medical University of Silesia, Narcyzow 1, 41-200 Sosnowiec, Poland
autor
autor
autor
autor
autor
Bibliografia
- 1. SHAMSUDDIN A.M. Metabolism and cellular functions of IP6: a review. Anticancer Res. 18, 3733, 1999.
- 2. GRASES F., SIMONET B.M., PRIETO R.M., MARCH J.G. Phytate levels in diverse rat tissues: influence of dietary phytate. Br. J. Nutr. 86, 225, 2001.
- 3. SASAKAWA N., SHARIF M., HANLEY M.R. Metabolism and biological activities of inositol pentakisphosphates and inositol hexakisphosphate. Biochem Pharmacol. 50, 137, 1995.
- 4. OWEN R.W., WEISBERGER U.M., SPIEGELHARDER B., BARTSCH H. Faecal phytic acid and its relation to other putative markers of risk for colorectal cancer. Gut 38, 591, 1996.
- 5. GRASES F., SIMONET B.T., PRIETO R.M., MARCH J.G. Variation of InsP4, InsP5 and InsP6 levels in tissues and biological fluids depending on dietary phytate. J. Nutr. Biochem. 12, 595, 2001.
- 6. VUCENIK I., SHAMSUDDIN A.M. Protection against cancer by dietary IP6 and inositol. Nutr. Cancer 55, 109, 2006.
- 7. MA G., JIN Y., PIAO J., KOK F., GUUSJE B., JACOBSEN E. Phytate, calcium, iron, and zinc contents and molar ratios in foods commonly consumed in China. J. Agric. Food Chem. 53, 10285, 2005.
- 8. GRASES F., GARCIA-GONZALES R., TORRES J.J., LLOBERA A. Effects of phytic acid on renal stone formation in rats. Scand. J. Urol. Nephrol. 32, 261, 1988.
- 9. GRASES F., SIMONET B.M., PERELLO J., COSTA-BAUZA A., PRIETO R.M. Effect of phytate on element bioavailability in the second generation of rats. J. Trace Elem. Med. Biol. 17, 229, 2004.
- 10. HARLAND B. Rat plasma copper and zinc concentrations were not negatively affected by high phytate of “Black Seed”. FASEB J. 20, A196, 2006.
- 11. KRISTENSEN M.B., HELS O., MORBERG C.M., MARVING J., BUGE S., TETENS I. Total zinc absorption in young women, but not fractional zinc absorption, differs between vegetarian and meat-based diets with equal phytic acid content. Br. J. Nutr. 95, 963, 2006.
- 12. SHAMSUDDINA.M., VUCENIK I. IP6 and inositol in cancer prevention and therapy. Current Cancer Rev. 1, 259, 2005.
- 13. ONOMI S., OKAZAKI Y., KATAYAMA T. Effect of dietary level of phytic acid on hepatic and serum lipid status in rats fed a high-sucrose diet. Biosci. Biotechnol. Biochem. 68, 1379, 2004.
- 14. GRASES F., MARCH J.G., PRIETO R.M., SIMONET B.M., COSTA-BAUZA A., GARCIA-RAJA A., CONTE A. Urinary phytate in calcium oxalate stone-formers and healthy people: dietary effects on phytate excretion. Scand. J. Urol. Nephrol. 34, 162, 2000.
- 15. GRASES F., SANCHIS P., PERELLO J., ISERN B., PRIETO R.M., FERNANDEZ-PALOMEQUE C., FIOL M., BONNIN O., TORRES J.J. Phytate (Myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front. Biosci. 11, 136, 2006.
- 16. VUCENIK I., PODCZASY J. J., SHAMSUDDIN A.M. Antiplatelet activity of inositol hexaphosphate (IP6). Anticancer Res. 19, 3689, 1999.
- 17. BATEN A., ULLAH A., TOMAZIC V.J., SHAMSUDDIN A.M. Inositol-phosphate-induced enhancement of natural killer cell activity correlates with tumor suppression. Carcinogenesis 10, 1595, 1989.
- 18. ZHANG Z., SONGY., WANG X.-L. Inositol hexaphospahteinduced enhancement of natural killer cell activity correlates with suppression of colon carcinogenesis in rats. World J. Gastroenterol. 11, 5044, 2005.
- 19. EGGLETON P., PENHALLOW J., CRAWFORD N. Priming action of inositol hexakisphosphate (InsP6) on the stimulated respiratory burst in human neutrophils. Biochim. Biophys. Acta 1094, 309, 1991.
- 20. EGGLETON P. Effect of IP6 on human neutrophil cytokine production and cell morphology. Anticancer Res. 19, 3711, 1999.
- 21. WĘGLARZ L., WAWSZCZYK J., ORCHEL A., JAWORSKA-KIK M., DZIERŻEWICZ Z. Phytic acid modulates in vitro IL-8 and IL-6 release from colonic epithelial cells stimulated with LPS and IL-1β. Dig. Dis. Sci. 52, 93, 2007.
- 22. GIBSON G.R. Physiology and ecology of the sulphate-reducing bacteria. J. Appl. Bacteriol. 69, 769, 1990.
- 23. POSTGATE J.R. The sulphate-reducing bacteria. 2nd ed., Cambridge University Pres, Cambridge, England, 1984.
- 24. FUDE L., HARRIS B., URRUTIA M.M., BEVERIDGE T.J. Reduction of Cr(VI) by a consortium of sulphate-reducing bacteria (SRB III). Appl. Environ. Microbiol. 60, 1525, 1994.
- 25. HAMILTON W.A. Sulphate-reducing bacteria and anaerobic corrosion. Annu. Rev. Microbiol. 39, 195, 1985.
- 26. DZIERŻEWICZ Z., GAWLIK B., CWALINA B., GONCIARZ Z., ZIÓŁKOWSKI G., GONCIARZ Z., WILCZOK T. Activity of sulphate-reducing bacteria in the human digestive tract. Bull. Pol. Acad. Sci. Biol. 42, 171, 1994.
- 27. GIBSON G.R., CUMMINGS J.H., MacFARLANE G.T. Growth and activities of sulphate-reducing bacteria in gut contents of healthy subjects and patients with ulcerative colitis. FEMS Microbiol. Ecol. 86, 103, 1991.
- 28. BARON E.J., BENNION R., THOMPSON J., STRONG C., SUMMANEN P., McTEAGUE M., FINEGOLD S.M. A microbiological comparison between acute and complicated appendicitis. Clin. Infect. Dis. 14, 227, 1992.
- 29. DZIERŻEWICZ Z., CWALINA B., GAWLIK B., WILCZOK T., GONCIARZ Z. Isolation and evaluation of susceptibility to sulphasalazine of Desulfovibrio desulfuricans strains from the human tract. Acta Microbiol. Pol. 46, 175, 1997.
- 30. GOLDSTEIN E.J.C., CITRON D.M., PERAINO V.A., CROSS S.A. Desulfovibrio desulfuricans bacteremia and review of human Desulfovibrio infections. J. Clin. Microbiol. 41, 2752, 2003.
- 31. TEE W., DYALL-SMITH M., WOODS W., EISEN D. Probable new species of Desulfovibrio isolated from a pyogenic liver abscess. J. Clin. Microbiol. 34, 1760, 1996.
- 32. RIETSCHEL E.T., BRADE H., HOLST O., BRADE I. Bacterial endotoxins: Chemical constitution, biological recognition, host response and immunological detoxification. pp. 40-81. In: Pathology shock. Rietschel E.T., Wagner H. (eds.). Springer-Verlag, Berlin-Heidelberg-New York, 1996.
- 33. ZHANG H., PETERSON J.W., NIESEL D.W., KLIMPEL G.R. Bacterial lipoprotein and LPS act synergistically to induce lethal shock and proinflammatory cytokine production. J. Immunol. 159, 4868, 1997.
- 34. WĘGLARZ L., DZIERŻEWICZ Z., ORCHEL A., SZCZERBA J., JAWORSKA-KIK M., WILCZOK T. Biological activity of Desulfovibrio desulfuricans lipopolysaccharides evaluated via interleukin-8 secretion by Caco-2 cells. Scan. J. Gastroenterol. 38, 73, 2003.
- 35. WĘGLARZ L., DZIERŻEWICZ Z., SKOP B., ORCHELA., PARFINIEWICZ B., WIŚNIOWSKA B., ŚWIĄTKOWSKA L., WILCZOK T. Desulfovibrio desulfuricans lipopolysaccharides induce endothelial cell IL-6 and IL-8 secretion and E-selectin and VCAM-1 expression. Cell. Mol. Biol. Lett. 8, 991, 2003.
- 36. WĘGLARZ L., PARFINIEWICZ B., MERTAS A., KONDERA-ANASZ Z., JAWORSKA-KIK M., DZIERŻEWICZ Z., ŚWIĄTKOWSKA L. Effect of endotoxins isolated from Desulfovibrio desulfuricans soil and intestinal strain on the secretion of TNF-α by human mononuclear cells. Polish J. Environ. Stud. 15, 615, 2006.
- 37. DZIERŻEWICZ Z., CWALINA B., WĘGLARZ L., GŁĄB S. Isolation and evaluation of corrosive aggressivity of wild strains of sulphate-reducing bacteria. Acta Microbiol. Pol. 42, 211, 1992.
- 38. WESTPHAL O., LUDERITZ O., BISTER F.Z. Bacterial strains and isolation of bacterial lipopolysaccharides. Naturforsch. 78, 148, 1952.
- 39. BOYÜM A. Separation of lymphocytes, granulocytes and monocytes from human blood using iodinated density gradient media. In: Methods Enzymol. Di Sabato G., Langone J.J., Van Vunakis H. (eds.). Academic Press, New York, London, vol. 108, 88, 1984.
- 40. MACDERMOTT R.P. Immunology of inflammatory bowel disease. Curr. Opin. Gastroenterol. 14, 54, 1998.
- 41. JIRILLO E., CARADONNA L., GRECO B. Circulating bacterial lipopolysaccharides (LPS) in patients with inflammatory bowel disease. Microecol. Ther. 25, 37, 1995.
- 42. CARADONNAL., AMATI L., MAGRONE T., PELLEGRINO W.M., JIRILLO E., CACCARO D. Enteric bacteria, lipopolysaccharides and related cytokines in inflammatory bowel disease: biological and clinical significance. J. Endotox. Res. 6, 205, 2000.
- 43. ROBERTS F.A., RICHARDSON G.J., MICHALEK S.M. Effects of Porphyromonas gingivalis and Escherichia coli lipopolysaccharides on mononuclear phagocytes. Infect. Immun. 65, 3248, 1997.
- 44. BHATTI M., CHAPMAN P., PETERS M., HASKARD D., HODGSON H.J.F. Visualising Eselectin in the detection and evaluation of inflammatory bowel disease. Gut 43, 40, 1998.
- 45. AYBAY C., IMIR T. Comparison of the effects of Salmonella minnesota Re595 lipopolysaccharide, lipid A and monophosphoryl lipid A on nitric oxide, TNF-α, and IL-6 induction from RAW 264.7 macrophages. FEMS Immunol. Microbiol. 22, 263, 1998.
- 46. WEIDEMANN B., BRADE H., RIETSCHEL E.T., DZIARSKI R., BAZIL V., KUSUMOTO S., FLAD H.D., ULMER A.J. Soluble peptidoglycan induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infect. Immun. 62, 4709, 1994.
- 47. HAWKINS P.T., POYNER D.R., JACKSON T.R., LETCHER D.A., IRVINE R.F. Inhibition of iron-catalyzed hydroxyl radical formation by inositol polyphosphates: A possible physiological function for myo-inositol hexakisphosphate. Biochem. J. 294, 929, 1993.
- 48. CRAWFORD N., EGGLETON P. Dynamic changes in neutrophil cytoskeleton during priming and subsequent surface stimulated functions. Biochem. Soc. Trans. 19, 1048, 1991.
- 49. CADWALLADER K.A., CONDLIFFE A.M., Mc GREGOR A., WALKER T.R., WHITE J.F., STEPHENS L.R., CHILVERS E.R. Regulation of phosphatidylinositol 3kinase activity and phosphatidylinositol 3.4.5-trisphosphate accumulation by neutrophil priming agents. J. Immunol. 169, 3336, 2002.
- 50. ABU-EL-SAAD A.-A.S.A. Immunomodulating effect of inositol hexaphosphate against Aeromonas hydrophila-endotoxin. Immunobiology 212, 179, 2007.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-59899874-1857-4f67-a535-da9d10e5d91a