Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | 55 | 4 |
Tytuł artykułu

Effects of culture conditions on production of extracellular laccase by Rhizoctonia praticola

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It was found that the soil-dwelling fungus Rhizoctonia praticola 93A was capable to produce laccase in submerged cultures. Effects of culture conditions on the enzyme biosynthesis in shaken flask and aerated bioreactor cultures were evaluated to improve the yields of the process. Production of extracellular laccase was considerably intensified by the addition of Cu²⁺ to a carbon-limited and nitrogen-sufficient culture medium (C/N = 0.98). When an optimized medium containing glucose (2 g/l) and L-asparagine (1.5 g/l) was used and enzyme synthesis was stimulated by addition of 5 μM Cu²⁺ before inoculation, maximal laccase activities obtained in a batch cultivation were, approximately, 1000 nkat/l. Under these conditions, addition to the medium of the aromatic inducer 2,5-xylidine (1 mM) led to a 10-fold increase in laccase activity. Laccase productivity in shaken flask cultures was also enhanced (to more than 4000 nkat/l on day 3) by using a medium with the initial pH of 7.5. Such a high value of the optimal medium pH for laccase production by R. praticola is exceptional among the ligninolytic fungi. In fermenter fungal cultures supplemented with cupric ions, the highest laccase activity (about 4000 nkat/l after 3 days' cultivation) was reached after 24-h incubation using a bioreactor with the aeration rate of 2 l/min, the agitation speed of 200 rμM, and a constant medium pH of 8.0.
Wydawca
-
Rocznik
Tom
55
Numer
4
Opis fizyczny
p.309-319,fig.,ref.
Twórcy
autor
  • Maria Curie-Sklodowska University, Akademicka 19, 20-032 Lublin, Poland
autor
autor
autor
Bibliografia
  • Arora D.S. and P.K. Gill. 2001. Effects of various media and supplements on laccase production by some white rot fungi. Biores. Technol. 77: 89-91.
  • Baldrian P. and J. Gabriel. 2002. Copper and cadmium increase laccase activity in Pleurotus ostreatus. FEMS Microbiol. Lett. 206: 69-74.
  • Bollag J.-M. and A. Leonowicz. 1984. Comparative studies of extracellular fungal laceases. Appl. Environ. Microbiol. 48: 849-854.
  • Bollag J.-M., R.D. Sjoblad and S.-Y. Liu. 1979. Characterization of an enzyme from Rhizoctonia praticola which polymerizes phenolic compounds. Can. J. Microbiol. 25: 229-233.
  • Chen S., D. Ma, W. Ge and J.A. Buswell. 2003. Induction of laccase activity in the edible straw mushroom, Volvariella volvacea. FEMS Microbiol. Lett. 218: 143-148.
  • Cho N.-S., J. Rogalski, M. Jaszek, J. Luterek, M. Wojtas-Wasilewska, E. Malarczyk, M. Fink-Boots and A. Leonowicz. 1999. Effect of coniferyl alcohol addition on removal of chlorophenols from water effluent by fungal laceaseJ. Wood Sci. 45: 174-178.
  • Claus H. 2004. Laceases: structure, reactions, distribution. Micron 35: 93-96.
  • Crowe J.D. and S. Olsson. 2001. Induction of laccase activity in Rhizoctonia solani by antagonistic Pseudomonas fluorescens strains and a range of chemical treatments. Appl. Environ. Microbiol. 67: 2088-2094.
  • Dec J. and J.-M. Bollag. 1990. Detoxification of substituted phenols by oxidoreductive enzymes through polymerization reactions. Arch. Environ. Contamin. Toxicol. 19: 543-550.
  • Farnet A.-M., S. Tagger and J. LePetit. 1999. Effects of copper and aromatic inducers on the laceases of the white-rot fungus Marasmius quercophilus. C.R. Acad. Sci. Paris, Sciences de la vie/Life Sciences 322: 499-503.
  • Fernandez-Larrea J. and U. Stahl. 1996. Isolation and characterization of a laccase gene from Podospora ansarina. Mol. Gen. Genet. 252: 539-551.
  • Galhaup C. and D. Haltrich. 2001. Enhanced formation of laccase activity by the white-rot fungus Trametes pubescens in the presence of copper. Appl. Microbiol. Biotechnol. 56: 225-232.
  • Galhaup C., H. Wagner, B. Hinterstoisser and D. Haltrich. 2002. Increased production of laccase by the wood-degrading basidiomycete Trametes pubescens. Enzyme Microb. Technol. 30: 529-536.
  • Gianfreda L., F. Xu and J.-M. Bollag. 1999. Laccases: a useful group of oxidoreductive enzymes. Biorem. J. 3: 1-25.
  • Giardina P., G. Palmieri, A. Scaloni, B. Fontanella, V. Faraco, G. Cennamo and G. Sannia. 1999. Protein and gene structure of a blue laccase from Pleurotus ostreatus. Biochem. J. 34: 655-663.
  • Hess J., C. Leitner, C. Galhaup, K.D. Kulbe, B. Hinterstoisser, M. Steinwender and D. Haltrich. 2002. Enhanced formation of extracellular laccase activity by the white-rot fungus Trametes multicolor. Appl. Biochem. Biotechnol. 98-100: 229-241.
  • Jang M.Y., W.R. Ryu and M.H. Cho. 2002. Laccase production from repeated batch cultures using free mycelia of Trametes sp. Enzyme Microb. Technol. 30: 741-746.
  • Janusz G. 2005. Comparative studies of fungal laccases. Ph.D. Thesis, Maria Curie-Sklodowska University, Lublin, Poland.
  • Jönsson L.J., M. Saloheimo and M. Penllilä. 1997. Laccase from the white-rot fungus Trametes versicolor. cDNA cloning of led and expression in Pichia pastoris. Curr. Genet. 32: 425-430.
  • Kiiskinen L.L., L. Viikari and K. Kruus. 2002. Purification and characterization of a novel laccase from the ascomycete Melanocarpus albomyces. Appl. Microbiol. Biotechnol. 59: 198-204.
  • Kwon S.-I. and A.J. Anderson. 2001. Laccase isozymes: production by an opportunistic pathogen, a Fusariumproliferatum isolate from wheat. Physiol. Mol. Plant Pathol. 59: 235-242.
  • Leonowicz A., N.-S. Cho, J. Luterek, A. Wilkolazka, M. Wojtas-Wasilewska, A. Matuszewska, M. Hofrichter, D. Wesenberg and J. Rogalski. 2001. Fungal laccase: properties and activity on lignin. J. Basic Microbiol. 41: 185-227.
  • Leonowicz A., R.U. Edgehill and J.-M. Bollag. 1984. The effect of pH on the transformation of syringic and vanillic acids by the laccases of Rhizoctonia praticola and Trametes versicolor. Arch. Microbiol. 137: 89-96.
  • Leonowicz A. and K. Grzywnowicz. 1981. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 3: 55-58.
  • Lindeberg G. and G. Holm. 1952. Occurrence oftyrosinase and laccase in fruit bodies and mycelia of some Hymenomycetes. Physiol. Plant. 5: 100-114.
  • Mayer A.M. and R.C. Staples. 2002. Laccase: new functions for an old enzyme - a review. Phytochemistry 60: 551-565.
  • Moreira M.T., A. Torrado, G. Feijoo and J.M. Lema. 2000. Manganese peroxidase production by Bjerkandera sp. BOS55. 2. Operation in stirrer tank reactors. Bioprocess Eng. 23: 657-661.
  • Muñoz C, F. Guillén, A.T. Martinez and M.J. Martinez. 1997. Induction and characterization of laccase in the ligninolytic fungus Pleurotus eryngii. Curr. Microbiol. 34: 1-5.
  • Niku-Paavola M.-L., E. Karhunen, A. Kantelinen, L. Viikari, T. Lundell and A. Hatakka. 1990. The effect of culture conditions on the production of lignin modifying enzymes by the white-rot fungus Phlebia radiata. J. Biotechnol. 13: 211-221.
  • Nyanhongo G.S., J. Gomes, G. Gübitz, R. Zvauya, J.S. Read and W. Steiner. 2002. Production of laccase by a newly isolated strain of Trametes modesta. Biores. Technol. 84: 259-263.
  • Palmieri G., P. Giardina, C. Bianco, B. Fontanella and G. Sannia. 2000. Copper induction of laccase isoenzymes in the ligninolytic fungus Pleurotus ostreatus. Appl. Environ. Microbiol. 66: 920-924.
  • Pointing S.B., E.B.G. Jones and L.L.P. Vrijmoed. 2000. Optimization of laccase production by Pycnoporus sanguineus in submerged liquid culture. Mycologia 92: 139-144.
  • Pozdnyakova N.N., J. Rodakiewicz-Nowak and O.V. Turkovskaya. 2004. Catalytic properties of yellow laccase from Pleurotus ostreatus Dl. J. Mol. Cat. B- Enzymatic 30: 19-24.
  • Rancaño G., M. Lorenzo, N. Molares, S. Rodriguez Couto and Á. Sanromán. 2003. Production of laccase by Trametes versicolor in an airlift fermentor. Proc. Biochem. 39: 467-473.
  • Rogalski J. and A. Leonowicz. 1992. Phlebia radiata laccase forms induced by veratric acid and xylidine in relation to lignin peroxidase and manganese-dependent peroxidase. Acta Biotechnol. 12: 213-221.
  • Rogalski J., T. Lundell, A. Leonowicz and A. Hatakka. 1991. Influence of aromatic compounds and lignin on production of ligninolytic enzymes by Phlebia radiata. Phytochemistry 30: 2869-2872.
  • Shuttleworth K.L., L. Postie and J.-M. Bollag. 1986. Production of induced laccase by the fungus Rhizoctonia praticola. Can. J. Microbiol. 32: 867-870.
  • Tien M. and T.K. Kirk. 1984. Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H₂O₂,-requiring oxygenase. Proc. Natl. Acad. Sci. USA 81: 2280-2284.
  • Xu R, R.M. Berka, J.A. Wahleithner, B.A. Nelson, J.R. Shuster, S.H. Brown, A.E. Palmer and E.I. Solomon. 1998. Site-directed mutations in fungal laccase: effect on redox potential, activity and pH profile. Biochem. J. 334: 63-70.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-56129c7d-567a-49c8-884e-0e1e1c9f6593
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.