Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2009 | 68 | 4 | 244-246
Tytuł artykułu

Controlled cholesterol efflux from the aortic smooth muscle cells triggers microheterogeneity of plasma membrane lipids and induces modification of the mitochondrial topology

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It is generally accepted that phospholipids of plasma membrane display lateral segregation into small microdomains commonly known as lipid rafts. Such lateral lipid organization is under the control of cholesterol. Cholesterol depletion evolved by methyl-β-cyclodextrin (MCD) has been found to induce further marked perturbation in lateral lipid organization, evidenced in the high field part of electron paramagnetic resonance spectra of plasma membranes labelled with a spectroscopic probe, namely 5-doxyl-stearic acid (5DOXS). Such perturbation of surface lipid topo-logy has been found to induce distinct changes in the mitochondrial morpho-logy, i.e. switch from filamentous form into small granular form. (Folia Morphol 2009; 68, 4: 244–246)
Wydawca
-
Czasopismo
Rocznik
Tom
68
Numer
4
Strony
244-246
Opis fizyczny
p.244-246,fig.,ref.
Twórcy
autor
  • Medical University of Gdansk, Debinki 1, 80-211 Gdansk, Poland
autor
autor
autor
autor
Bibliografia
  • 1. Babiychuk EB, Draeger A (2000) Annexins in cell membrane dynamics. Ca(2+)-regulated association of lipid microdomains. J Cell Biol, 150: 1113–1124.
  • 2. Hanada K, Nishijima M, Akamatsu Y, Pagano RE (1995) Both sphingolipids and cholesterol participate in the detergent insolubility of alkaline phosphatase, a glycosylphosphatidylinositol-anchored protein, in mammalian membranes. J Biol Chem, 270: 6254–6260.
  • 3. Harder T, Scheiffele P, Verkade P, Simons K (1998) Lipid domain structure of the plasma membrane revealed by patching of membrane components. J Cell Biol, 141: 929–942.
  • 4. Lange Y, Ramos BV (1983) Analysis of the distribution of cholesterol in the intact cell. J Biol Chem, 258: 15130–15134.
  • 5. Parton RG, Simons K (1995) Digging into caveolae. Science, 269: 1398–1399.
  • 6. Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature, 387: 569–572.
  • 7. Smaby JM, Momsen M, Kulkarni VS, Brown RE (1996) Cholesterol-induced interfacial area condensations of galactosylceramides and sphingomyelins with identical acyl chains. Biochemistry, 35: 5696–5704.
  • 8. Tamura M, Kai T, Tsunawaki S, Lambeth JD, Kameda K (2000) Direct interaction of actin with p47(phox) of neutrophil NADPH oxidase. Biochem Biophys Res Commun, 276: 1186–1190.
  • 9. Tukaj C, Bohdanowicz J, Kubasik-Juraniec J (2002) A scanning electron microscopic study of phenotypic plasticity and surface structural changes of aortal smooth muscle cells in primary culture. Folia Morphol, 61: 191–198.
  • 10. Ushio-Fukai M, Hilenski L, Santanam N, Becker PL, Ma Y, Griendling KK, Alexander RW (2001) Cholesterol depletion inhibits epidermal growth factor receptor transactivation by angiotensin II in vascular smooth muscle cells: role of cholesterol-rich microdomains and focal adhesions in angiotensin II signaling. J Biol Chem, 276: 48269–48275.
  • 11. Villalba M, Bi K, Rodriguez F, Tanaka Y, Schoenberger S, Altman A (2001) Vav1/Rac-dependent actin cytoskeleton reorganization is required for lipid raft clustering in T cells. J Cell Biol, 155: 331–338.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.agro-article-4e9b45ac-f1b7-4a74-99e9-df5532d1e86b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.